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Abstract 

 With climate change due to global warming, the production of hydrocarbon fuels 

and chemicals from renewable biomass resource has become more pressing in recent 

decades.  The biggest challenge in biomass conversion is to develop active, selective and 

stable catalysts for particular applications.  The objective of this research is to optimize 

catalytic performance for hydrodeoxygenation (HDO) and hydrogenation reactions by 

enhancing the stability of the support, tuning metal particle size, and controlling surface 

composition. 

The high content of water in bio-oil and the aqueous environment of the upgrading 

process requires a hydrothermally stable catalyst.  The hydrothermal stability has been 

effectively improved at 220oC by various means: the introduction of Zr, carbon coating on 

silica, and the development of mesoporous alumina.  Monometallic and bimetallic catalysts 

were prepared on these stable supports by strong electrostatic adsorption (SEA) and ultra-

small nanoparticles (<2 nm) were synthesized. Stability tests at the bio-oil HDO reaction 

temperature of 300oC revealed that the mesoporous alumina outperformed the other 

supports in terms surface area and pore structure maintenance, and metal particle stability. 

Mesoporous alumina-supported Pt/Ru and Cu/Ni were tested for HDO of bio-oil at USDA. 

Two methods were applied to control metal particle sizes.  In the first, SEA-derived Ru 

and Pt nanoparticles (<2 nm) supported on mesoporous silica were treated at elevated 
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temperatures (800oC and 900oC) in humidified hydrogen to achieve series of catalysts with 

particle sizes ranging from 1 to 5 nm.  This treatment, however, significantly deteriorated

the support.  A milder method was demonstrated via charge enhanced dry impregnation 

(CEDI): Pt particles were grown from about 1 to 10 nm on a variety of common supports 

by adding excess chloride to the impregnating solution.  Particle size sensitivity to chloride 

was compared on various supports. 

The effect on furfural hydrogenation of controlling of surface composition of 

bimetallic nanoparticles was demonstrated with silica supported PdCu and PdCo catalysts 

prepared by co-SEA, SEA followed by Electroless Deposition (SEA-ED), and dry 

impregnation (co-DI).  SEA and co-SEA preparations yielded ultra-small (about 1 nm) 

single metal Pd, Cu, and Co and homogeneously alloyed PdCu and PdCo nanoparticles.  

Cu could be added as partial monolayer shells via ED to the SEA-synthesized Pd cores.  

The reaction pathway and product yield were seen to be a sensitive function of the synthesis 

method and corresponding surface composition. 
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Chapter 1 

Introduction 

1.1 Biomass conversion 

With the increasing demand for energy and depletion of fossil fuel around the world 

and the commensurate issue of global warming, substantial research is being carried out to 

find alternative fuels which are renewable, environmental friendly, and low cost, such as 

wind, solar, fuel cell and biomass.  One fifth of total energy consumption is from 

transportation 1-3, and that number keeps increasing as the world’s population grows. As 

one of the few green sources to yield liquid transportation fuel, biomass conversion has 

been gaining more and more attention.  Being derived from biomass with food grade 

quality, the first-generation bio-oil (bio-ethanol and bio-diesel) is losing its attraction.  The 

second-generation biofuel is produced from agricultural waste, forest waste, energy crops 

and aquatic plants, and it is emerging as a promising solution to relieve energy and 

environmental concerns.  Sustainable production of fuels and high value chemicals from 

biomass resources can be established by integration of conversion processes into 

biorefineries.  

As reported in the literature, three general routes can be used to convert biomass 

into hydrocarbon fuel, including syngas production by gasification followed by Fisher-

Tropsch process, bio-oil from pyrolysis or liquefaction followed by catalytic upgrading, 

and hydrolysis of lignocellulose followed by catalytic processing or fermentation.  

Compared with gasification and hydrolysis, pyrolysis of biomass integrated with catalytic 
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upgrading has been cited as the most economical path with simplest cycle 4-5.  Besides cost-

effectiveness and efficiency, fast pyrolysis can produce bio-oil in high yields, and retain 

70% of energy stored in biomass, therefore fast pyrolysis is attracting great interest in 

recent years.  However, the high energy density bio-oil from pyrolysis cannot be directly 

utilized as transportation fuel and chemicals.  More than 200 oxygenated compounds have 

been identified in pyrolysis oil 2, 4, 6 and specific composition in bio-oil depends on biomass 

resources and conditions used.  Oxygen content affects properties of heating value, 

viscosity and acidity in bio-oil, therefore bio-oil must be upgraded via hydrodeoxygenation 

(HDO), hydrogenation, or other processes before being blended as transportation fuel.  

The catalytic upgrading of pyrolysis oil is quite challenging due to the complexity 

of pyrolysis oil.  Zeolite cracking and hydrodeoxygenation are widely accepted catalytic 

approaches to upgrade bio-oil 2, 4.  Zeolites, like HZSM-5 are used in zeolite cracking to 

exclude oxygen from pyrolysis oil.  Zeolite cracking is operated at 350-500oC and 

atmospheric pressure without H2.  Despite of these advantages, the application of zeolite 

cracking is limited due to the lower grade of product oil 2, 7 and high yield of coking 7.  

HDO is an alternative path with best potential to upgrade bio-oil.  HDO is operated under 

high pressure hydrogen to remove oxygen as water, leading to high grade bio-oil as crude 

oil.  Conventional hydroprocessing catalysts, such as Co-MoS2/Al2O3 and Ni- MoS2/Al2O3 

8-9, and supported base (Ni, Cu, Co, Fe etc.) 2, 10-15 and noble metal (Pt, Ru, Pd etc.) 9, 11-12, 

15-20 catalysts are found out to be active in HDO reactions of phenolic compounds (phenol, 

cresol, guaiacol etc.) and real bio-oil.  One pronounced problem of sulfide catalysts is 

deactivation. Co-feeding of H2 S into the system can help to avoid it 2, but at the same time 

it causes sulfur contamination in bio-oil which initially is almost sulfur-free 2, 21 
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Supported noble metal catalysts have been widely used in chemical and energy 

production as well as environmental protection 22.  Unlike metal sulphides, supported metal 

catalysts do not require the addition of sulfur to maintain stability and activity.  The metal 

used as hydrogenation catalysts are not prone to coking as are zeolites.  Prior studies have 

shown that supported metal hydrogenation catalysts can hydrogenate and deoxygenate 

phenolic compounds 1-2, 23.  For example, supported metal catalysts (Pt/SiO2, Ru/SiO2, 

Pt/Al2O3, Ru/Al2O3, Pt/C, Ru/C, etc.) can be used to upgrade bio-oil via 

hydrodeoxygenation for production of traditional refinery-ready hydrocarbon feedstock.  

The effect of metal, solvent and mass-transfer on catalytic hydroprocessing of p-cresol as 

a model compound has been investigated by Wan et. al. 9.  Similarly, Foster et. al 12 studied 

the effect of acid functionalized support and metal function for m-cresol 

hydrodeoxygenation.  Very recently, the Lercher group investigated the importance of Ni 

nanoparticle size and distribution on the hydrodeoxygentation of microalgal oil 13.  In 

Wang’s group, Fe based bimetallic catalysts were examined in the gas phase HDO of 

guaiacol 24-25.  Compared with other cheap metals, such as Ni, Cu and Co, besides the 

lowest cost, Fe showed a better hydrogen economy: higher oxygen removal percentage 

with lowest hydrogen consumption; Pd promoted Fe bimetallic catalyst exhibited 

promising catalytic features: showing a same level of oxygen removal (100%) as Ni-Cu 

bimetallic catalyst but less aromatic ring saturation 26. At 350oC, guaiacol conversion was 

improved from 96% to 100% with Pd promotion on 2wt %Pd-10wt %Fe/C, and the yield 

of oxygen-free aromatic compounds improved from 6.3% to 25.9%.  The enhanced 

hydrodeoxygenation activity is believed to stem from the presence of Pd which facilitates 

the reduction of FeOx and modifies Fe, leading to enhanced HDO of phenol.  The presence 
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of Pd may also facilitate H2 dissociation/oxygen removal.  The further hydrogenation of 

aromatic ring is likely prevented by the preferential adsorption of phenols from Fe’s 

oxygen affinity.  

Furfural hydrogenation is one of the important reactions in biomass conversion.  

Furfural (C5H4O2), can be produced from acid-catalyzed hydrolysis and dehydration of 

hemicellulose in lignocellulosic biomass 27-28, and it is considered as a key platform 

molecule in biomass conversion.  With multiple functional groups, furfural can be 

catalytically transformed into a variety of valuable chemicals through various routes 29 , 

including furans, alcohols and ketones.  Currently, furfural is mainly transformed into 

furfural alcohol (FAL) or tetrahedralfurfural alcohol (THFAL) which are widely used as 

solvents 30. 

Another possible product in furfural conversion is cyclopentanone.  

Cyclopentanone (CPO), a cyclic ketone, is a key intermediate chemical in the production 

of pharmaceuticals, fragrances and cosmetics, rubber chemicals and agrochemicals.  CPO 

is traditionally produced from is prepared by catalytic vapor-phase cyclisation of 1,6-

hexanediol or adipic esters 31, or liquid-phase oxidation of cyclopentene with nitrous oxide 

32.  Driven by the rapid growth of pharmaceutical industry, the global demand for 

cyclopentanone market was valued at USD 100.0 million in 2014, and is expected to reach 

USD 130.0 million in 2020 33.  As one of the downstream products of furfural 

hydrogenation, the production of CPO from biomass based FFA might be an efficient way 

to expand the industrial application of biomass. 

FFA conversion has been widely reported in literature, including 

decarbonylation/hydrodeoxygenation to furans 34, hydrogenation to alcohols 35-36 and 
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rearrangement to ketones 37.  At 220oC, 53% yield of furans was observed on 3%Pd/C after 

5 hours in  isopropyl alcohol, including 20% of tetrahydrofuran (THF), 20% of methyl 

furan (MF) and 13% of methyl tetrahydrofuran (MTHF) 38; the production of THF is via 

decarbonylation of furfural to furan (FN), followed by ring hydrogenation 38; and MF is 

believed to be produced from hydrodeoxygenation fof furfural and further ring 

hydrogenation forms MTHF 39.  Product distribution was greatly affected by temperature 

40: the selectivity of furans (MF+FN) increased from 8.1% to 56.4% as tempreature 

increased from 180 oC to 240oC on 5%Pt/Al2O3;  The production of MF is investigated in 

Vohs’ work: furfural bonding was significantly altered on the Zn modified-Pt catalyst 

where the carbonyl C-O bond was weakened and the weak interaction between furan ring 

and ZnPt surface limited ring hydrogenation to MTHF 41.  Furfural alcohol (FAL) and 

tetrahydrofufural alcohol (THFAL) were observed on Pd bimetallic catalysts in liquid 

phase 30, 36, 42.  The total hydrogenation of furfural to THFAL occured on PdNi/TiO2-ZrO2 

at 130oC with 725 psig H2, the alteration in products from partial hydrogenated product 

(FAL) was believed from the bimetallic synergistic effect 30.  Furfural hydrogenation was 

affected by solvent polarity: the high polarity of water facilited furfural hydrogenation 42 

and the selectivity towards THFAL was enhanced in ethanol, followed by dioxane and 

toluene, which is in the same trend of polarity order 30.  The mechanism of furfural ring 

arrangement to CPO was proposed to be consisting of steps: partial hydrogenation of 

furfural to FAL and subsequent conversion to CPO or THFAL 43-44.  The selectivity to CPO 

showed a vocanol-shape trend as temperature increased from 140oC to 200oC on Cu-Co 

catalysts, meanwhile the further hydrogenation of CPO to cyclopentanol (CPL) was 

improved 44; and higher hydrogen pressure also favored hydrogenation of CPO to CPL, 
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together with total hydrogenation of furfural to THFAL 44.  The effect of solvents on 

furfural transformation  to cyclopentanone has been studied in Hronec’s work 37: furan ring 

rearrangement wasn’t observed  on noble metal catalysts in alcohol but in water.  Furfural 

was selectively transformed  into CPO on 6.8 nm Pd-Cu/C bimetallic catalysts 43; CPO 

yield was improved from 73.1% to 92.1% as Cu loading increased from 3% to 10%; the 

first step was facilited on Pd-Cu+ sites, and the yielded FAL wan then rearranged to CPO 

accelarated by the concentration of hydrogen ions from water dissociation.  

Since pyrolysis produces bio-oils having up to 30 vol% water, HDO catalysts must 

not only be active and selective, but also stable under hydrothermal conditions.  Besides, 

to maintain the liquid phase, high pressure is necessary when operating above the boiling 

point of water.  The converntial supports utilized in catalysis field such as Al2O3, SiO2 

which are unstable under such hydrothermal conditions due to the fact that increased 

amount of  H+ and OH− ions can attack the surface of the supports leading to severe change 

in the support, such as surface area loss, pore structure collapse which is undesirable for 

catalytic performance.  Therefore, it is necessary to enhance the supports‘ hydrothermal 

stability to be suitable for aqueous phase biomass conversion.  

Currently, there are four strategies to improve hydrothermal stability in 

heterogenous catalysis: introduction of heteroatoms into support, deposition of thin layers 

onto support, deposition of oxide particles onto carbon and surface modification by 

functional groups.  

It has been reported that hydrothermal stability can be improved by doping 

heteroatoms such as La3+, Ga3+, Sm, Ce, Ti4+ , Zr and Al 45-51.  The hydrothermal stability 

of aluminosilicate was markedly enhanced by the incorporation of Al into mesoporous 
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SBA-15 matrix.  The hydrolysis of  Si-O-Si was impeded by the formation of more stable 

Si-O-Al 52.  The amount of Al being introduced greatly affected stability: in Huber’s work 

53, the least amount of Al (Si/Al = 40.1) provided the better protection on MCM-41 than 

Si/Al = 8.5 and 23.1 in boiling water.  It was suggested that Al incorporated onto the 

surface/near surface region of the pore walls provided the greatest protection.  Tetrahedral 

Al creates a net negative charge in the framework, which repels OH− ions that accelarates 

siloxane hydrolysis 48. 

A Nb2O5 layer was deposited onto SBA-15 by atomic layer deposition in Datey’s 

group 54.  The amount of Nb2O5 can be controlled by ALD cycles. These mesoporous niobia 

materials were proved to be superior stability in liquid water at 200oC; Another a simple 

and inexpensive approach to strengthen stability of oxides is to coat a carbon layer derived 

from sugars onto the base support.  With 10 wt% carbon, mesoporous silica and alumina 

demonstrated intact structure after 24 hours treatment in water at 200oC 55.  In Coe’s 

research, precursors of carbon were studied  51: compared with sucrose and furfuryl alcohol 

(FA), polyfurfural alcohol (PFA) was the most effective carbon precursor to yield carbon 

coatings to maintain stability in water at 220oC. 

Recently, a new method of a deposition–precipitation–carbonization was devised 

to prepare niobia/carbon composites 56-57.  8 nm Nb2O5 nanoparticles were dispersed onto 

carbon surface which was proved to be more stable than the commercial Nb2O5 HY-340 at 

elavated temperatures.  The enhanced stability of niobia/carbon composites was due to the 

hydrophobic nature of carbon.  In the catalytic evaluation of γ-valerolactone to pentanoic 

acid, niobia/carbon  helped to preserve the Pd dispersion.  
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The ultimate goal in surface modification is to increase the hydrophobicity of 

support by indroducing new functional groups or removing unstable functionalityies.  The 

hydrophobic groups hintered support from the hydrolytic attack.  Zeolite’s stability was 

improved by hydrophobization with octadecyltrichlorosilane (OTS) 58.  The introduction 

of OTS didn’t change the acid sites in zeolites and makes it more suitable to be utilized in 

bio-oil upgrading.  It is also reported that N-(2-aminoethyl)-3-

aminopropyltrimethoxysilane (AEAPS)-functionalized SBA-16 materials can change the 

properties of the support showed superior hydrophobicity to the pure SBA-16 support 59.  

The above studies are more focused on the process of biomass conversion 

(temperature, pressure, solvents etc.).  Catalysts being used in those studies are typically 

either commercial or by dry impregnation, which give around 5 nm or even larger metal 

particles.  In this work, catalysts optimization is the focus. Catalysts are fabricated to yield 

ultra-small metal particles by a simple and reproducible method: Strong Electrostatic 

Adsorption (SEA). 

1.2 Catalysts synthesis 

Various methods have been developed for both monometallic and bimetallic 

catalysts.  The catalytic performance of catalysts is closed related to the methods of catalyst 

synthesis.  Impregnation 60, deposition-precipitation 61, strong electrostatic adsorption 62 

and redox reactions 63 are the most commonly-used methods. 

1.2.1 Impregnation  

The most prevalent catalyst preparation method in literature and in industry is dry 

impregnation (DI), also named as pore filling.  In this method, metal precursor in pore 

volume of solution is impregnated to the dry support powder.  This method does not 
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guarantee either strong metal-support interaction or homogenous metal deposition.  

However, DI process is the quickest, simplest and least expensive method of catalyst 

preparation with no loss of metals.  

The second common impregnation is wet impregnation (WI) where support is 

immersed in an excess volume of solution containing the metal salt precursor.  Compared 

with DI method, WI is a much slower process involving diffusion of metal precursor into 

pores in support which takes several hours to reach equilibrium.  Precursor crystallization 

might happen during water removal by evaporation which can cause waste of metal 

precursor and metal precipitation.  

There are two methods for bimetallic catalysts synthesis by impregnation method: 

co-impregnation and successive impregnation.  In co-impregnation, simultaneous 

impregnation of both active metal precursor components occurs.  Successive impregnation 

consists of two steps where the impregnation of first metal salt on a support is applied, 

followed by impregnation of second metal on the monometallic catalyst.  Due to the lack 

of strong interaction between precursors and support, the poor mixing between two metal 

precursor components is usually observed. These catalysts are not true bimetallic catalysts, 

to be specific, but a wide range of materials with a rather random distribution of 

monometallic and bimetallic particles which are normally large in size.  

1.2.2 Precipitation-deposition 

The deposition-precipitation (D-P) method is a process in which the selective 

precipitation of a soluble metal precursor onto support is induced by addition of 

precipitating agent.  The most commonly used agents are sodium hydroxide 64-65 and urea 

63, 66.  The precipitating agent must be added gradually into the metal precursor containing 
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solution to maintain a homogenous concentration of hydroxyl ions which can avoid metal 

precipitation in the solution.  The D-P method presents a higher reproducibility with the 

nanoparticles synthesized showing a tighter size distribution than impregnation method 

even at higher metal loadings.  For example, when utilizing urea as the precipitating agent, 

metal loadings up to 8% Au/TiO2 had an average particle size as small as 1.8 nm 67-68.  The 

slow decomposition of urea at elevated temperature helps to evenly disperse OH-, and the 

pH gradient in the solution is minimized, therefore metal hydroxide deposits on the support.  

In preparation of bimetallic catalysts, two metal salts can be precipitated simultaneously or 

sequentially on the support.  However, this method is problematic, same as impregnation, 

in terms of surface composition in bimetallic catalysts. 

1.2.3 Strong electrostatic adsorption (SEA) and charge-enhanced dry impregnation (CEDI) 

SEA is columbic in nature and can be achieved with precise pH control 69.  Oxide 

surfaces terminate in hydroxyl groups which can be protonated or deprotonated as a 

function of solution pH.  At these conditions the strong interaction between the charged 

support and metal precursor of opposite charges via electrostatic force can be established.  

Anion precursors will adsorb over a protonated surface below the point of zero charge 

(PZC), similarly, cations will adsorb over a deprotonated surface above the PZC.  With the 

strong interaction, the metal migration is limited to minimum extent during thermal 

treatment, resulting in small metal particles. SEA has been successfully applied to 

synthesize highly dispersed metal nanoparticles (1-2 nm) on a variety of oxides and carbon 

supports 3, 70-72.  The procedure of a typical SEA experiment is presented as in Fig. 1.1. 

The pH of bulk solution in contact with support is acidified or basified to stay away 

from the PZC of support to generate electrostatic adsorption; as the pH is enhanced, more 
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metal precursors are adsorbed on the support by electrostatic interaction.  The optimal pH 

to achieve the maximum uptake can be located in metal uptake survey.  The amount of 

metal being adsorbed is determined as the difference between initial (pre-adsorption) and 

final (post-adsorption) metal concentration Ci and Cf ppm by ICP-OES: (Molecular weight 

M = MWM, surface loading = SL) 

Metal uptake in μmoles/m2 = 
(Ci−Cf)[ppm]×1000 MWM

SL [𝑚2/liter]
, 

SL [𝑚2/𝑙𝑖𝑡𝑒𝑟] = 
Surface Area of support [𝑚2/g]×grams of support[g]

Volume of Precursor Solution[liter]
 

 

 

Figure 1.1 Steps of SEA synthesis: a) PZC measurement of support by single point method 

and precursor determination; b) location of optimal pH in metal uptake survey, c) precursor 

adsorption with hydration layers over oppositively charged support in synthesis at optimal 

pH determined from b) and highly dispersed metal particles over support after thermal 

reduction.  
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The metal uptake capacity is assumed to be a steric maximum, which is dictated by 

the closed packed geometry of metal ion precursor retaining various numbers of hydration 

sheaths (Figure 1.1c).  It is generally suggested that cationic and anionic metal precursor 

ions retain two and one layers of hydration respectively. Cationic precursors such as 

Pt(NH3)4
2+ and Pd(NH3)4

2+ retaining double hydration sheaths exhibits a maximum 

adsorption capacity of ~0.84 mol/m2 62.  On the other hand, anionic precursors, PtCl6
2- 

and Ru(CN)6
4- retain a single hydration sheath and hence the maximum uptake is around 

1.6 mol/m2 62.  At extreme pH values, however, adsorption is retarded by high ionic 

strength 62, 70-71.  After drying and reduction, well dispersed metal nanoparticles are derived 

via this method due to the initial strong precursor-support interaction.  

Recently, a simple way to synthesize supported metal catalysts with high dispersion 

was demonstrated, called Charge Enhanced Dry Impregnation (CEDI) which is essentially 

the same concept as SEA73-75.  CEDI combines the simplicity of dry impregnation with the 

high dispersion rendered by SEA 70, 72, 76-80.  The normal procedure for dry impregnation 

(also known as incipient wetness or pore filling impregnation) is followed, except that the 

impregnating solution is acidified or basified to cause an electrostatic interaction between 

the support surface and the oppositely charged metal precursor.  The amount of acid or 

base need to overcome the buffering effect of the support surface is surprisingly large 74, 

81, for example, at DI conditions to obtain the optimal final pH of 11 over alumina, an initial 

pH of 13.5 must be employed 80.  CEDI-synthesized Pt particles over alumina, silica, and 

titania are less than 1.5 nm in diameter (the XRD limit of detection) 75.   

Bimetallic catalysts can be also prepared by either simultaneous SEA (co-SEA) 

making alloy catalysts or sequential SEA leading to core-shell structure. Rendered by the 
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advantages in SEA method, SEA-prepared bimetallic catalysts present close intimacy 

between two metals 82-83 

1.2.4 Electroless deposition (ED) 

 Another method to make core-shell bimetallic catalysts is electroless deposition 

(ED), through which a shell metal is deposited in partial or multi-monolayers on a core 

metal.  It is typically an aqueous bath maintained at a predetermined pH containing a 

secondary metal precursor, a reducing agent (Hydrazine (N2H4), formaldehyde (HCHO), 

hypophosphite (H2PO2
-), and dimethylamine borane (DMAB) are commonly used 

reducing agents 84, an optional complexing/stabilizing agent 85.  A supported monometallic 

catalyst is used as the seed or base catalyst for following ED process.  Placing a second 

metal exclusively as a partial shell on a first metal core offers the ability to synthesize true 

bimetallic surfaces with no particles of each of the monometallic components.  ED 

proceeds catalytically or autocatalytically whereby a shell of controllable coverage of metal 

can be deposited selectively onto pre-existing core particles (or seed nuclei) of a pre-

existing metal.  The solution phase reducing agent only activated on the surface of metal 

particles, therefore, deposition of secondary metal is targeted onto the base catalyst 

particles or itself.  By controlling the base catalyst, secondary metal ion source, reducing 

agent, bath temperature, and pH, multiple bimetallic catalyst systems, such as Cu−Pd 86, 

Ag−Pt 87, Pt−Co 88, Au−Pd 84, 89, and Ag−Pd 90 were successfully synthesized. 

The objective of this work is to optimize catalytic performance by tuning the noble 

metal particle size, controlling surface composition and increasing the hydrothermal 

stability of support using the rational catalyst synthesis methods outlined above.
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Chapter 2 

Experimental methods 

2.1 Catalysts preparation  

Four different commercial powder supports were utilized as recieved. Chemicals 

include metal precursors, acid/base (pH adjustment).  Details are presented in the following 

Table 2.1. 

2.1.1 Catalysts by SEA 

a) PZC determination 

Deionized water was added to incipient wetness of 2 grams support in a 50 mL 

centrifuge tube.  A spear-tip pH meter was used to measure the pH of the thick slurry.   

b) Uptake surveys  

Metal uptake-pH surveys were carried out in 60 mL polypropylene bottles containing 

55 mL of 200 ppm precursors, with initial pH adjusted in the range of 5 to 13 by HCl and 

NaOH (NH4OH for base metal precursors: NiHA, CuTA and CoHA).  5 ml solution was 

taken out for later ICP analysis (Cmetal,initial).  The amounts of supports were added to 

achieve a constant surface loadings (500 or 1000 m2/L).  Taking as received SBA-15 

(SA=710 m2/g) as an example, m (g) =
1000

m2

L
×

50 L

1000

710
m2

g

= 0.0704g. 

After adding supports into metal precursor solutions, they were placed on an 

orbital shaker for 1 h to ensure adsorption equilibrium. Final pH values were recorded 
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and 5 mL solution was filtered for ICP analysis (Cmetal,final).  The metal surface density, Γ, 

is calculated as: Γ(
μmol

L
) =

(𝐶metal,initial−𝐶metal,final)(
μmol

L
)

SL
m2

L

 .  

Table 2.1. Summary of chemicals and materials. 

Commercial name Formular/abbr. Supplier 

Hexaamineruthenium (III) chloride Ru(NH3)6Cl3/RuHA Sigma Chem Co. 

Potassium hexacyanoruthenate(II) K4Ru(CN)6/RuHCN Sigma Chem Co. 

Tetraamineplatinum(II) chloride Pt(NH3)4Cl2/PTA Sigma Chem Co. 

Chloroplatinic(IV) acid H2PtCl6.6H2O/PtHC Sigma Chem Co. 

Tetraaminepalladium(II) chloride Pd(NH3)4Cl2/PdTA Sigma Chem Co. 

Hexaamminecobalt(III) chloride Co(NH3)6Cl3/CoHA Sigma Chem Co. 

Tetraamincopper(II) chloride Cu(NH3)4(SO4)2/CuTA Sigma Chem Co. 

Copper(II) nitrate Cu(NO3)2 Sigma Chem Co. 

Potassium copper(I) cyanide KCu(CN)2 Sigma Chem Co. 

Nickle(II) nitrate hexahydrate Ni(NO3)2 Alfa Aesar 

Sodium chloride NaCl Fisher Scientific 

Citric acid C6H8O7 Sigma Chem Co. 

Hydrochloric acid HCl Sigma Chem Co. 

Sodium hydroxide NaOH Ricca Chemical Co., 

Ammonium hydroxide NH4OH BDH, 5N 

Aerosil 300 SiO2 Evonik 

Sba-200 Al2O3 Sasol 

Hombikat N100 TiO2 Sachtleben 

Timrex C Sachtleben 



www.manaraa.com

16 

c) Catalysts synthesis and characterization 

2 grams of catalysts were prepared under the same conditions where the maximum 

uptake occurred in the uptake surveys.  When synthesizing the Pd bimetallic catalysts by 

SEA, a solution containing two metal precursors in a certain molar ratio was first prepared, 

NH4OH was used to adjust the pH in the solution.  The excess solution was removed by 

vacuum filtration and the wet slurry were then dried overnight at 100oC in oven and reduced 

in the flow of 20% H2/He at optimal temperature determined in temperature-programmed 

reduction for 1 hour. 

2.1.2 Catalysts by CEDI 

The Pt loading in CEDI prepared catalysts were determined by maximum uptake 

with surface loading as high as 25,000 m2/L to make sure metal adsorption was electrostatic. 

PTA-OH or PTA-NO3 was dissolved into a pore volume’s worth of 1M NH4OH.  Sodium 

chloride (NaCl) was added into the solution to achieve Cl- loadings from 0.1 to 1 wt%.  

After thorough mixing, the thick slurries were oven dried at 85oC for 2 hours to evaporate 

excess water.  The dried powder was then reduced for 1 hour in 20% H2/He at 350oC (300oC 

for carbon catalysts to avoid methanation), using a ramp rate of 5oC/min. 

2.1.3 Catalysts by DI 

Equivalent metal loadings using the same precursor as in SEA were prepared by 

conventional dry impregnation (DI) (also called o incipient wetness impregnation or pore 

filling).  The precursors were dissolved into the quantity of deionized water needed to just 

fill the pore volume of 2 grams of support.  The thick slurry was dried overnight at 100oC 

in air and reduced in a flow of 20% H2/He at the same temperature as its SEA counterpart 

for 1 hour. 
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2.1.4 Pd/Cu/SiO2 catalysts by ED 

The SEA prepared 1.3% Pd/SiO2 was utilized as the seed catalyst. In a typical 

electroless deposition of Cu, 0.4 g seed catalyst was placed in 100 mL KCu(CN)2 

containing- solution, diluted reducing agent (hydrazine, H4N2) was pumped into the 

solution constantly in one hour period.  The whole process was performed around pH 9.5 

at room temperature.  Small aliquots of the bath were withdrawn and syringe-filtered at 20 

min intervals and then analyzed.  The residue reducing agent was rinsed off by 2 liters of 

deionized water.  The amount of Cu deposition was controlled by the initial concentration 

of Cu in the ED bath. Catalysts were air dried at 100 oC overnight after ED. 

2.2 Catalyst characterization 

2.2.1 pH probe meter 

A standard pH electrode (Orion 3-star benchtop) was used and calibrated by 3-point 

calibration with three HACH color-coded pH buffer solutions (pH = 4.0, 7.0, 10.0).  

Acceptable electrode slope was set to be 95% or higher. For measurement of PZC of the 

support, a spear-tip pH meter from Fisher Scientific was used to measure the pH of the 

thick slurry, and the calibration process is same as Orion 3-star benchtop. 

2.2.2 N2 physisorption (BET surface area and pore size distribution) 

BET surface area measurements were obtained using an automated adsorption 

system (ASAP, 2100, Micromeritics).  0.2 grams of support powder was first degassed at 

150ºC, 10-3 Pa.  After being transported from degassing port to analysis port, the sample 

was charged by N2 at 77 K with relative pressure ranging from 0~0.99.  The BET specific 

surface area was evaluated using the linear relation between P/P0 and 1/ [V/ (P/P0-1)] with 
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8 points from 0-0.35 of P/P0 values.  And pore size distribution was plotted as d(V) vs dlog 

(D) based on the desorption branch. 

2.2.3 Inductively coupled plasma optical emission spectrophotometry (ICP-OES) 

Metal concentration before and after SEA were measured by ICP-OES from 

PerkinElmer.  Metal uptake and loading were calculated from the difference between initial 

and final concentration.  During ICP analysis, a 5ppm Y solution was used as internal 

standard. Mn solution was used for optical alignment.  Three concentrations of standard 

metal solutions (0, 200 and 500 ppm) were utilized for concentration calibration.  Analysis 

for each sample was repeated 3x times using an auto-sampler. Acceptable goodness of fit 

for calibration was set to be ≥0.999.  A quality check (QC) was performed with a 200 ppm 

standard solution after calibration and the acceptable limit of error in concentration for QC 

was set at ≤ ±10%.  Besides, QC was set every 10 analysis.  If the error was beyond the 

limit, metal concentration would be recalibrated. 

2.2.4 Temperature program reduction (TPR)  

TPR was performed on Micromeritics AutoChem II 2920 with a thermal 

conductivity detector.  Samples were first dried in He at 120oC for 1 hour to remove 

moisture.  TPR analysis was run in 10% H2/He and TCD signals were recorded from 40oC 

to 800oC with a ramp rate of 5oC/min. 

2.2.5 X-ray diffraction (XRD) 

Powder XRD analysis was carried out on a Rigaku Miniflex-II with a silica strip 

detector (D/teX Ultra) with Cu Kα radiation (λ = 1.5406 Å), operated at 15 kV and 30 mA.  

Scans were made in the 20°−80° 2θ range, with a scan rate of 2.0° 2θ/min, Pt diffractions 
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were fit on the software of Fityk using Gaussian to achieve FWHM values.  Metal particle 

sizes were calculated by Scherrer equation with a shape factor of 0.94.   

2.2.6 Pulse chemisorption 

Chemisorption measurements were also carried out with the Micromeritics 

Autochem II 2920.  Before analysis, all samples were pretreated in situ in flowing H2 for 2 

h at 350°C and then purged with flowing Ar for 30 min before cooling to 40°C in Ar.  The 

catalyst was then contacted with 10% oxygen in helium at 40°C for 30 min to form O-

covered Pt species, PtO.  After residual physisorbed O2 being reduced in Ar flow for 30 

min, pulses of 10% H2/Ar were dosed at 4 min intervals until all the surface oxygen reacted 

with H2 to form H2O and Pt−H species. The assumed overall stoichiometry is 0.667 Pt: 1 

H2.  Particle sizes were estimated from chemisorption assuming hemispherical geometry. 

2.2.7 Scanning tunneling electron microscopy (STEM) 

Micrographs of catalysts were acquired using the JEM-ARM200CF STEM (JEOL 

USA Inc., Peabody, MA, USA).  The JEM-ARM200CF is a probe aberration corrected 

200kV STEM/TEM with a cold field emission source with 0.35eV energy resolution.  And 

the elemental mappings of bimetallic catalysts were generated using an Oxford Instruments 

X-Max100TLE SDD detector (Oxford Instruments PLC, Abingdon, Oxfordshire, UK).  

Approximately 500 particles were counted over a series of images for size distribution for 

each sample. 

2.2.8 X-ray photoelectron spectroscopy (XPS) 

XPS measurements were conducted using a Kratos AXIS Ultra DLD XPS system 

equipped with a monochromatic Al K source.  The monochromatic Al Kα source was 

operated at 15 keV and 150 W, incident at 45° with respect to the surface normal.  The pass 
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energy was fixed at 40 eV for the detailed scans.  All Ru 3d5/2 binding energy (BE) peak 

positions were corrected using the C 1s binding energy value of 284.2 eV and all peak 

intensities were normalized to that for the C 1s peak for quantitative comparison.  

2.2.8 GC-MS 

Gas chromatography–mass spectrometry (GC-MS) is an analytical method that 

combines the features of gas-chromatography and mass spectrometry to identify different 

substances within a sample. Products of bio-oil HDO were analyzed by GC-MA. For GC-

MS, a small measured amount of sample was collected from the reactor as-is post-reaction 

and dissolved in 0.05 wt% fluoranthene in acetone, to a known concentration.  The 

dissolved sample was then centrifuged in a microcentrifuge (Fisher Scientific) to remove 

any precipitated catalyst.  The liquid portion removed, and the centrifuged mass was 

weighed by difference, which was used to correct the liquid concentration for GC-MS 

analysis.  

2.2.9 NMR 

Nuclear magnetic resonance (NMR) is a physical phenomenon in which nuclei in a 

magnetic field absorb and re-emit electromagnetic radiation. Nuclear Magnetic Resonance 

(NMR) spectroscopy is an analytical chemistry technique used in quality control and 

reserach for determining the content and purity of a sample as well as its molecular 

structure. Products of bio-oil HDO were analyzed by H NMR. For NMR analysis, a fixed 

amount of sample from the reactor as-is post-reaction was dissolved in deuterated 

methanol.  After the entrained catalyst precipitated, the solution was transferred to an NMR 

tube for analysis.  
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2.3 Catalysts evaluation  

2.3.1 Hydrothermal tests 

Hydrothermal stability testing was carried out in a stainless-steel batch reactor with 

100mL capacity from Autoclave Engineers with the stirring speed of 1000 rpm. 0.2g of 

sample with 50 ml of DI water was heated to 220oC at autogenous pressure (22bar) for 24 

hours.  

2.3.2 Bio-oil hydrodexoygenation (HDO) 

Batch hydrodeoxygenation reaction experiments were carried out at USDA-ARS.  

In each experiment, a certain amount of catalyst and bio-oil were placed in 20 ~ 30g of 

deionized water in a Parr Series 4598 100 mL bench-top reactor.  The detailed procedure 

was as followed: after catalyst and bio-oil were loaded, the vessel was then sealed tight and 

flushed 3 times with hydrogen; after charging the vessel with 300 psi hydrogen, the 

water/catalyst slurry was lightly stirred at 300 rpm while the temperature of the vessel was 

maintained at 300oC for 1 hour; then the hydrogen reservoir pressure regulator was 

increased to 1800 psig; around 9g of bio-oil was injected into the reactor, and the mixer 

speed was increased to 750 rpm; after 3 hours reaction, the primary hydrogen valve was 

closed off, the heater was removed, and the mixer speed was decreased to 300 rpm; Once 

the reactor was cooled to room temperature, non-condensable gases were vented into a 

collection bag and further analyzed; the aqueous phase was decanted from the vessel and 

centrifuged to remove any partially miscible components; a sample of bio-oil/catalyst 

product was also collected for direct analysis of the product before the vessel and the 

reactor parts were washed with acetone to collect any accumulated oil.  The acetone 
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washings were filtered through a 0.45 um PTFE filter to remove the catalyst, and the 

acetone was removed by rotary evaporation. Experiments were performed in duplicate. 

2.3.2 Furfural hydrogenation 

The hydrogenation of furfural was performed in a stainless-steel batch reactor with 

100mL capacity from Autoclave Engineers with the stirring speed of 1000 rpm. Reactions 

were run for 3 h at 430 psi H2 and 150oC in water.  Control runs with no catalyst showed 

negligible reactivity. A given amount of catalyst and 200μL of 1,4-dioxane (internal 

standard) were added.  Prior to the reaction, catalysts were pretreated in 57 grams of water 

in H2 flowing at 150oC for 1 h, after which 3.0 g furfural (FFA) was pumped (in 10 s) into 

the reactor with a high-pressure HPLC pump.  Liquid samples (0.25ml) were taken in an 

interval of 20 min and analyzed by gas chromatography.  The Madon-Boudart test was 

implemented over 3.3% Pd/SiO2 and 0.7% Pd/SiO2.  XRD showed both samples to have 

Pd size below 1.5 nm.  Turnover frequency was calculated based on 10% conversion of 

furfural at 150oC and were equivalent (~0.11-s) within experimental error.  The similarity 

of the TOFs at with a five-fold variation in the number of active sites in the same catalyst 

volume confirms the absence of transport limitations.  Reaction rates of catalysts were 

calculated based on mass of Pd and mass compared at 10% conversion of FFA. Catalytic 

activity was also reported as turnover frequency (TOF, molecules reacted per site per 

second) which were estimated from H2-chemisorption for Pd, and for Cu/SiO2 which does 

not chemisorb, from the 1.5 nm size determined from XRD). 

Conversion, product selectivity and yield were calculated as: 

Conversion = 100% × 
𝑛𝐹𝐹𝐴

0 −𝑛𝐹𝐹𝐴

𝑛𝐹𝐹𝐴
0 , S𝑖 = 100% × 

𝑛𝑖

∑ 𝑛𝑖
 and 𝑌𝑖 = 100% × 𝑆𝑖×

 𝐶𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛.
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Chapter 3 

Synthesis of highly dispersed monometallic catalysts on hydrothermally 

stable supports by strong electrostatic adsorption, characterization, and 

evaluation for biomass conversion 

 3.1 Introduction  

Strong electrostatic adsorption was utilized to synthesize ultra-small (about 1 nm) 

Pt and Ru metal nanoparticles over amorphous SiO2 and SBA-15 supports; meanwhile, Pt 

and Ru catalysts were also prepared by conventional impregnation methods. Comparison 

was made between the two methods.  Supported catalysts are used in aqueous phase 

biomass conversion at high temperature and pressure.  Conventional supports such as SiO2 

and Al2O3 are unstable under such conditions due to the hydrolysis of support 91.  For 

example, SBA-15, a type of mesoporous silica which is widely utilized in the field of 

catalysis with its high surface area and well-ordered pore structure, loses 88% of its original 

surface area after hydrothermal treatment at 220oC in for water for 4 hours.  Therefore, it 

is necessary to improve the stability of supports in water to achieve better catalytic 

performance.  

Four types of supports were employed in this study: silica supports were stabilized 

by two methods; first, the introduction of heteroatoms (Zr, Al) to impede hydrolysis of 

silica, and second, the deposition of thin carbon layers on the support surface.  Third, a 

mesoporous alumina was prepared, and the fourth was carbon, known to be stable in 

hydrothermal conditions but also generally recognized to be less selective to desired HDO 
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products.  These supports were first tested in a moderately rigorous hydrothermal 

environment of 220oC and 360 psig, and then under reaction conditions at 300oC and 1800 

psig.  Support stability was determined by the surface area measurements before and after 

tests. The ability of the supports to anchor the metal nanoparticles against sintering and in 

the case of bimetals, dealloying was also studied.  

The most stable and best anchoring oxide support was found to be mesoporous 

alumina. Noble metal (Pt and Ru) single and bimetallic catalysts as well as base metal (Cu 

and Ni) single and bimetallic particles were synthesized on this support, and to compare 

the effect of support, the base metal catalysts were also prepared over a carbon support.  

These series of catalysts were tested at the USDA-ARS research center in Philadelphia for 

HDO of hardwood-derived bio-oil.  

3.2 Results and discussion 

3.2.1 Synthesis and characterization of highly dispersed Ru and Pt nanoparticles on 

silica 

SBA-15 was prepared as reported 92.  Ruthenium hexaamine chloride 

([Ru(NH3)6]Cl3, 99.9%) and platinum tetraamine chloride ([Pt(NH3)4]Cl2, 99.9%) obtained 

from Aldrich which are designated as RuHA and PTA respectively were used as ruthenium 

and platinum precursors. Stock solutions of 200ppm Ru or Pt were prepared. The PZC of 

SiO2 support was determined as 4.4, the procedure was such: deionized water was added 

to incipient wetness of 2g SBA-15 in a 50 mL centrifuge tube.  A spear-tip pH meter was 

used to measure the pH of the thick slurry.   

The PZC of SBA-15 was determined to be below 7, thus, cation metal complexes 

such as platinum tetraammine chloride (PTA) and ruthenium hexamine chloride (RuHA) 

were chosen as precursor.  Metal uptake-pH surveys were carried out in 60-mL 
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polypropylene bottles containing 55 mL of 200 ppm RuHA or PTA, with initial pH 

adjusted in the range of 5 to 13 by HCl and NaOH.  5 ml solution was taken out for later 

Inductively coupled plasma optical emission spectrometry (ICP-OES) analysis 

(Cmetal,initial).  

After adding supports into metal precursor solutions, they were placed on an orbital 

shaker for 1 h to ensure adsorption equilibrium.  Final pH values were recorded and 5 mL 

solution was filtered for ICP analysis (Cmetal,final). The metal surface density, Γ, is calculated 

as: Г(
𝜇𝑚𝑜𝑙

𝑚2 ) =
(𝐶𝑚𝑒𝑡𝑎𝑙,𝑖𝑛𝑖𝑡𝑖𝑎𝑙−𝐶𝑚𝑒𝑡𝑎𝑙,𝑓𝑖𝑛𝑎𝑙)(

𝜇𝑚𝑜𝑙

𝐿
)

𝑆𝐿(
𝑚2

𝐿
)

. 

Figure 3.1 represents uptake surveys of RuHA/SBA-15 and PTA/SBA-15 for 1000 

m2/L surface loading (m2 of support per liter of precursor solution) and 200 ppm metal as 

a function of final pH of solution.  The metal uptake is reported as surface density, in 

μmol/m2.  SBA-15 followed essentially the same trend as silica 72.  No adsorption occurred 

below pH 6 as hydroxyl groups are not deprotonated sufficiently.  Volcano-shaped plots 

are observed in the range of pH 6 to pH 13.  As pH increases the adsorption of RuHA 

increase and reaches maximum surface density of 1.6 μmol/m2; while in case of PTA 

maximum surface density of 0.9 μmol/m2 is observed.  In case of RuHA, the maximum 

adsorption occurs at pH 11.4.  The retardation of adsorption process occurs at pH extremes, 

caused by high ionic strength, which decreases adsorption equilibrium constant 72.  The 

same trends are seen in all the other uptake surveys.  For the same precursor, similar 

maximum adsorption can be obtained on different silica supports at the same surface 

loading.  All catalysts were synthesized around the optimal pH followed by temperature 

programed reduction (TPR) to determine the reduction temperatures.  Catalysts were 
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characterized by X-ray diffraction (XRD) and scanning transmission electron microscopy 

(STEM) to determine metal particle sizes. 

The limit of metal uptake is thought to be steric; a monolayer is limited to a closed-

packed arrangement of complexes which retain one or two hydration sheaths.  The 

maximum uptake of PTA is 0.9 μmol/m2 or 1 complex/ 2 nm2, which corresponds to the 

retention of two hydration sheaths by the square planar PTA complex 72.  It appears that 

the octahedral RuHA complex, which adsorbs at 1.6 μmol/m2 or 1 complex/nm2, retains 

only one hydration sheath.  

 

Figure 3.1. Metal surface density vs final pH of solution at 1000 m2/L: RuHA; and PTA 

on SBA-15.  

 

Temperature program reduction (TPR) was performed on all filtered and dried SEA 

samples to determine the temperature of reduction of the metal complexes to metal. The 

TPR profile (Figure 3.2a) shows two peak for the RuHA complex.  The reduction of Ru4+ 
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Hence all RuHA/SiO2 catalysts were reduced at 300oC to obtain metallic Ru particles on 

SBA-15.  Two reduction peaks were also observed for PTA samples, one at 280oC and 

another at 350~400oC (Figure 3.2b).  Goguet et al. 93 systematically studied the 

decomposition of [Pt(NH3)4(OH)2]n complex on SiO2 and suggested that the 

decomposition steps involve an intermediate complex which anchors to SiO2 strongly 

during drying process and then decomposes to Pt0.  All PTA/SiO2 catalysts were reduced 

at 350oC.  

 

 

Figure 3.2. TPR profiles of dried a) RuHA/SBA-15 and b) PTA/SBA-15.  
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Scanning transmission electron microscope (STEM) was used to obtain high-angle 

annular dark-field (Z-contrast) images for each sample.  Figure 3.3 shows typical images 

for 9.7 wt% Ru and 10.0 wt% Pt particles deposited on SBA-15 prepared via SEA at 

monolayer adsorption. 

The hexagonal pore structure of SBA-15 is seen in some orientations of the sample 

as dark and bright contrast channels as in Figure 3.3a.  Figure 3.3b shows a side view of 

the hexagonal channels of the Pt/SBA-15 sample.  Metal particle sizes of the reduced 

catalysts prepared by SEA show very narrow size distribution throughout the SBA-15 pore 

channels.  The average particle size for 9.7 wt% Ru/SBA-15 is 1.1 nm ± 0.2 nm, and that 

of the 10.0 wt% Pt/SBA-15 is 1.3 ± 0.3 nm (Fig 3.3).  

 

Figure 3.3.a) Representative STEM images and corresponding particle size distribution of 

Ru/SBA-15; bar scale 2 nm. 
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Figure 3.3.b) Representative STEM images and corresponding particle size distribution of 

Pt on SBA-15; bar scale 2 nm. 

 

3.2.2 Synthesis of Ru and Pt catalysts on hydrothermally-stable supports and their 

stability tests 

It has been reported in literature that introduction of heteroatoms such as Zr, Al, Ti, 

and Nb can improve the stability of silica in boiling water.  In the following experiments, 

various loading of Zr ranging from 0.92 to 13% were added into silica, 0.33wt% of Al was 

incorporated into SBA-15 matrix.  Carbon coating corresponding to 10wt% carbon from 

PFA was deposited onto Zr-modified silica.  Mesoporous alumina was synthesized as 

reported in literature with minor modifications. The PZCs and fresh BET surface areas are 

listed in Table 3.1. 
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For supports with PZC below 7, RuHA, PTA was used as precursor, and anionic 

complex, RuHCN, PtHC was used on high PZC support of Al2O3. 

Table 3.1. Basic properties of various supports. 

Hydrothermal supports PZC BET surface area (m2/g) 

0.92%Zr-SiO2 5.6 401 

4.8%Zr-SiO2 5.7 416 

13.0%Zr-SBA-15 5.5 558 

0.3%Al-SBA-15 3.3 454 

10%C-4.8%Zr-SiO2 3.6 229 

Meso-Al2O3 8.5 237 

 

a) Zr-SiO2 

Typical volcano-shape metal uptakes were seen on Zr-SiO2 in Figure 3.4.  The 

amount of Zr had no effect on metal adsorption which was consistent with PZC 

determinations displayed in Table 3.2, the maximum uptakes were 1.43, 1.64 and 1.57 

umol/m2 on 0.93% Zr-SiO2, 4.8% Zr-SiO2 and 13% Zr-SBA-15 respectively, and minor 

variations were observed in optimal pHs as shown in Figure 3.4. 5.3% Ru/0.93%Zr-SiO2, 

5.5% Ru/4.8% Zr-SiO2 and 6.0% Ru/13% Zr-SBA-15 were synthesized at pH 11.6, 11.9 

and 12.2 respectively.  These three catalysts were reduced in 20% H2/He at 300oC for 1 

hour before further characterization, such as XRD and STEM. 

Ru diffractions were absent in XRD profiles revealing Ru particles of below 1.5 

nm in all three catalysts (representative pattern in Figure 3.5a).  The minor distortion in the 

range of 26-38o in 6.0% Ru/13% Zr-SBA-15 was attributed to the small ZrO2 patches on 

silica. ZrO2 XRD pattern was provided at the bottom in Figure 3.5a.  And the existence of 

dispersed small ZrO2 in fresh support was proved in the STEM in Figure 3.6. 
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Figure 3.4. RuHA uptake surveys on SiO2 support with various amount of Zr doping. 

 

 
Figure 3.5.a) XRD patterns of fresh Zr/silica supported Ru catalysts. 
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Figure 3.5.b) XRD patterns of spent 5.5%Ru/4.8%Zr-SiO2. 

 

 

Figure 3.6. A representative STEM image of 13%Zr/SBA-15. 
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hydrothermal test in water at 220oC, there was 50% loss in surface area in 4.8%Zr-SiO2 as 

measured by BET surface area analysis.  However, the metal particle anchoring against 

sintering was weak: Ru particles sintered from 1.2 nm to 4.2 in 5.5%Ru/4.8%Zr-SiO2 

during 2 hours test at 300oC as shown in Figure 3.5b. 

b) Al-SiO2 

The small amount of Al (0.7wt%) introduced in SBA-15 showed no effect on metal 

adsorption, the volcano-shape of PTA uptake survey was shown in Figure 3.7, with 

maximum of 0.9 μmol/m2 at pH value of 10.6 corresponding to 8.1% Pt/ Al-SBA-15. A 

broad peak centered at 36o was observed in XRD pattern (Figure 3.8) which was indexed 

as Pt3O4.  It has been reported that room temperature Pt oxidation occurs very often on 

small particles.  Pt3O4 was sized as 1.5 nm based on Scherrer equation. STEM image in 

Figure 3.9 clearly displayed that homogenous Pt particles were highly dispersed on the 

support with and average size of 1.3 nm which is in a good agreement with XRD.  

 

Figure 3.7. PTA uptake survey on Al-SBA-15. 
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Figure 3.8. XRD pattern of 10%Pt/Al-SBA-15. 

 

The surface area of Al-SBA-15 dropped from 454 to 342 m2/g (25% loss) after 24 

hours hydrothermal tests at 220oC.  However, hydrolysis of Al-SBA-15 was accelerated at 

300oC leading to complete support dissolution, metal sintering could therefore not be 

studied.  

 

Figure 3.9. STEM of 10%Pt/Al-SBA-15. 
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c) C-Zr-SiO2 

Based on the metal uptake survey in Figure 3.10, 4.3%Ru/10%C-4.8%Zr-SiO2 

was prepared at pH 12.  As revealed in XRD pattern in Figure 3.11, small Ru particles 

were deposited by SEA method.  

10% carbon was coated on the 4.8%Zr-SiO2 followed by the method in literature 

51. The hydrothermal stability of this support was enhanced by the hydrophobicity of 

carbon, only 16% loss in surface area at 220oC for 16 hours.  Ru and Zr signals disappeared 

in XPS profiles (Figure 3.12a and b) after treatment 300oC for 2 hours indicating a severe 

metal leaching in 4.3%Ru/4.8%Zr-SiO2.  

 

Figure 3.10. RuHA uptake survey on 10%C-4.8%Zr-SiO2. 
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Figure 3.11. XRD of 4.3%Ru/10%C-4.8%Zr-SiO2. 

 

 

Figure 3.12.a) Ru signal in XPS profile of fresh and spent catalysts of 4.3%Ru/10%C-

4.8%Zr-SiO2. 

20 30 40 50 60 70 80

In
te

n
si

ty
 (

a
.u

.)

2 theta (deg)

4.3Ru/C-4.8Zr-SiO
2

450 460 470 480 490
1000

2000

3000

4000

5000

6000

Ru 3p3/2

In
te

n
si

ty
 (

C
o
u

n
ts

/s
ec

)

Binding Energy (eV)

 Fresh

 Used

Ru 3p1/2



www.manaraa.com

37 

 

Figure 3.12.b) Zr signal in XPS profile of fresh and spent catalysts of 4.3%Ru/10%C-

4.8%Zr-SiO2. 
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compared to pure mesoporous Al2O3 support, indicating ultra-small Ru particles have been 

deposited on the support by SEA.  The broad peak observed in the 4.2wt%Pt/m-Al2O3 

sample (Figure 3.14) is assigned to Pt (111), located at 39.9o 2θ, gives 1.4 nm from the 

Scherrer equation.  

 

Figure 3.13. Monometallic RuHCN and CPA uptake survey on meso-Al2O3. 

 

 

Figure 3.14. XRD of monometallic 3.0%Ru/ meso-Al2O3 and 4.2%Pt/ meso-Al2O3. 
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 Overall, meso-Al2O3 proved to be the most stable support under hydrothermal test 

(220oC) and reaction (300oC) conditions.  While its BET surface area decreased about 20% 

from 247 m2/g to 197 m2/g in the 220 oC test, its surface area appeared to increase by this 

amount at 300oC to 306 m2/g.  This has been reported in literature 95 and occurs with a 

transformation of amorphous alumina into to crystalline hydrated boehmite which is 

believed as the most stable alumina phase in water.  This surface also displayed the greatest 

metal particle anchoring ability; Ru size increased only to 2.5 nm as shown in the Ru 

deconvolution analysis of Figure 3.15b.  

3.2.3 Catalytic evaluation of noble and base metal single and bimetallic hdo catalyst 

synthesis and evaluation 

The meso-alumina support showed superior stability as well as metal anchoring 

ability under the rigorous hydrothermal conditions of the HDO reaction and was chosen as 

the support to compare noble metal (Pt and Ru) single and bimetallic catalysts versus base 

metal (Cu and Ni) single and bimetallic catalysts for the HDO reaction.  To confirm the 

superior selectivity of oxide supports, a parallel set of base metal catalysts was also 

prepared over a carbon support. 

a)  Pt and Ru Single and Bimetallic Catalysts on meso-Alumina 

For bimetallic catalyst synthesis, when mesoporous alumina was placed in solution 

containing 100 ppm of each metal precursor (Figure 3.16), the more strongly charged 

RuHCN was preferentially adsorbed over the PtHC.  To achieve a 1:1 atomic ratio of Pt:Ru,  

the concentrations of Pt and Ru were adjusted to 50 and 25 ppm respectively, which 

resulted in a simultaneous uptake of 45 and 25 ppm, corresponding to 1.0 and 0.5 wt%.  To 

increase the total metal loading at constant metal ratios, the co-SEA process was repeated 

after the first deposition of precursors was reduced at 350oC.  The second application of 
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metals resulted in an additional 1.0 wt% of Pt and 0.5 wt% of Ru, for a total weight loading 

of 2.0 wt% Pt and 1 wt% Ru, in a 1:1 atomic ratio.  

XRD patterns in Figure 3.17a (middle 2 patterns) show that PtRu bimetallic catalyst 

is also very highly dispersed, with no notable difference between 1st and 2nd SEA cycles. 

Post reaction, the alumina again converts to boehmite and the particle size grows a bit, 

though the metals are still alloyed at evidenced by the position of the peak at 40.4 o2 , 

which is between Pt (111) at 39.8 o2  and the Ru (101) at 44.2 o2 .  Figure 3.17b shows 

a deconvolution analysis of the boehmite peak at 38.6 o2  and the Pt rich Pt/Ru alloy 

(111) peak at 40.4 o2 , which is comprised of small (1.7 nm) and larger (4.8 nm) alloy 

particles.  From an area average of the XRD peaks the overall average size of the particles 

is 3.0 nm.   

When mesoporous alumina was placed in solution together at 100 ppm each (Figure 

3.16), the more strongly charged RuHCN was preferentially adsorbed over the PtHC.  To 

achieve a 1:1 atomic ratio of Pt:Ru, the concentrations of Pt and Ru were adjusted to 50 

and 25 ppm respectively, which resulted in a simultaneous uptake of 45 and 25 ppm, 

corresponding to 1.0 and 0.5 wt%.  To increase the total metal loading at constant metal 

ratios, the co-SEA process was repeated after the first deposition of precursors was reduced 

at 350oC.  The second application of metals resulted in an additional 1.0 wt% of Pt and 0.5 

wt% of Ru, for a total weight loading of 2.0 wt% Pt and 1 wt% Ru, in a 1:1 atomic ratio.  

XRD patterns in Figure 3.17 (middle 2 patterns) show that PtRu bimetallic catalyst 

is also very highly dispersed, there was minor difference between 1st and 2nd SEA cycles.  

The reducibility of the catalysts was examined by H2-TPR analysis. In Figure 3.18, 

the main reduction peak of the RuHCN precursor on alumina is seen to be about 530oC, 
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while the PtHC precursor reduces as much lower temperature.  Ru reduction in the PtRu 

sample is shifted down to 400oC, which can be attributed to hydrogen spillover from 

closely interacting Pt sites.  

 

 

Figure 3.15.a) XRD pattern of fresh and tested (300oC) 3.0%Ru/ meso-Al2O3 and b) Ru 

deconvolution from boehmite in tested 3.0%Ru/ meso-Al2O3. 
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Figure 3.16. Bimetallic uptake of RuHCN and PHC on meso-Al2O3. 

 

Figure 3.17.a) XRD patterns of fresh and spent bimetallic 1%Ru2%Pt/ meso-Al2O3. 
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Figure 3.17.b) peak deconvolution of spent bimetallic 1%Ru2%Pt/ meso-Al2O3. 

 

 

Figure 3.18. TPR profiles of monometallic Ru, Pt and bimetallic RuPt catalysts. 
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The alloying of metals in 1.0%Ru-2.0%Pt/meso-Al2O3 was further characterized 

by STEM (Figure 3.19).  In the sample of fresh PtRu bimetallic catalyst (Fig. 3.19 a and 

b), the majority of nanoparticles are less than 2 nm, while small numbers of larger 

aggregates were as big as 4.3 nm. Those were identified as Pt-rich as shown in the 

representative elemental maps (Fig 3.19a, blue square).  The volume-averaged STEM size 

(1.9 nm) is in reasonable agreement with the XRD result in Fig 3.17 (middle 2 patterns), 

which showed no metal peaks.  The absence of PtRu peaks from XRD pattern can be 

attributed to the high portion of very small nanoparticles in Figure 3.19.  The minor 

difference among Dv, Ds and Dn further implies a tight particle size distribution and 

confirms the small percentage of large aggregates in the sample (Figure 3.19c).  When 

taking a close look at STEM images of the smaller (<2 nm) bimetallic nanoparticles, 

speckling was observed consistent with heavier and therefore brighter Pt atoms (red circles 

in Figure 3.19b) intermixed with Ru atoms. Close contact between Pt and Ru is also 

consistent with the TPR results in Figure 3.18 showing enhanced reducibility of the alloyed 

sample.  Numerous ultra-small clusters are also evidenced in the images and the X-ray 

maps (to the figure of Figure 3.19a).  The X-ray maps reveal that the larger particles are 

mostly Pt, with Ru being distributed more evenly over the support, but seemingly in 

relatively close contact with Pt. 

STEM images and maps of used catalyst are shown in Figure 3.20 and are 

consistent with XRD patterns: noble metal particles slightly sintered after 2 hours reaction 

aging at 300oC.  In the spent PtRu catalyst, an average size of 2.2 nm is obtained for a 

representative sample.  More significant overlap between Ru and Pt is seen in the spent 
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catalyst’s elemental maps in Figure 3.20a.  The small clusters of atoms have disappeared 

from the spent samples.   

 

Figure 3.19. STEM of Pt/Ru on meso alumina catalysts, (a) and EDXS elemental maps 

(blue=Pt, yellow=Ru) and (b) STEM images of fresh PtRu bimetallic nanoparticles. 
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Figure 3.19.c) Fresh particle size distribution in.STEM images of fresh PtRu bimetallic 

nanoparticles.  

 

b)  Cu and Ni Single and Bimetallic Catalysts on meso-Alumina 

An effective shortcut version of SEA termed “Charge Enhanced Dry Impregnation” 

was used for the simultaneous deposition of Cu and Ni onto mesoporous alumina.  In this 
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the citrate complexes with the metals to form anionic complexes and these electrostatically 

adsorb over a protonated and positively charged alumina surface.  Cu and Ni concentrations 

of 185 ppm and 201 ppm were used in 0.85 ml of solution along with 0.0634 g citric acid 

for 1.00 g of support, giving resulting weight loadings of 1.0 and 1.0% Cu and Ni.  The 

wet paste was dried in muffle furnace at 100oC overnight and reduced in 20% H2/He at 

400oC for 1 hour. 
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Figure 3.20.a) EDXS elemental maps (blue=Pt, yellow=Ru) and b) STEM images of spent 

PtRu bimetallic particles.  
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Figure 3.20.c) Spent particle size distribution in spent PtRu bimetallic catalyst. 
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particles.  The detailed deconvolution of fresh and tested catalysts was shown in Figure 

3.21b and c respectively. Compared with noble metal catalysts in Figure 3.19, base metal 

catalysts are less resistant to sintering and dealloying under the same conditions.   

 
Figure 3.21.a) XRD profiles of bimetallic 1Ni1Cu/mA catalysts before and after reaction; 

b) deconvolution of fresh bimetallic 1Ni1Cu/mA catalyst. 
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Figure 3.21.c) Deconvolution of spent bimetallic 1Ni1Cu/mA catalysts. 
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noble bimetallic catalyst which can be attributed to the modified CEDI preparation method, 

which is not as effective as SEA as producing ultra-small nanoparticles 75, 80. The volume 

average size is larger than the one estimated from XRD (3.3 nm) in Figure 3.23a and b, 

this can be explained in STEM and elemental maps: ultra-small Cu particles (yellow in 

elemental maps) spread homogeneously on the support, which were not counted when 

sizing the sample images, whereas these contributed to a smaller size estimation in bulk 

technique. 

 

Figure 3.22.a) STEM images and EDXS elemental maps of fresh NiCu bimetallics, 

blue=Ni, yellow=Cu, (b) fresh particle size distribution. 
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is determined as 16.2 nm for the Cu-rich alloy, 22.1nm for the original CuNi alloy (same 

species as in fresh one) and 17.4 nm for the Ni-rich alloy particles (Figure 3.23c). STEM 

images further confirmed that large particles formed and that the majority of NiCu core-

shell structure dealloyed with use (Figure 3.24). Additionally, XRD revealed Ni oxide and 

Cu oxide in the spent catalysts, indicated by the shaded 2  range of Figure 3.23a. 

Figure 3.25 summarizes characterization the three sets of fresh and spent HDO 

catalysts. In fresh catalyst, NiCu particles were ~ 3 times larger than RuPt particles in size. 

Noble metal catalysts showed better resistance to sintering and dealloying than base metals; 

and base metals sintered to the similar level on both supports. 

 
Figure 3.23.a) XRD profiles of bimetallic 1Ni1Cu/C catalysts before and after reaction. 
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Figure 3.23.b) Deconvolution of fresh bimetallic 1Ni1Cu/c catalyst; and c) deconvolution 

of spent bimetallic 1Ni1Cu/C catalysts. 
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Figure 3.24. STEM images and EDXS elemental maps of spent NiCu/C. 

 

 

Figure 3.25. Particle size sintering of three bimetallic catalysts during HDO reactions. 
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d)  HDO Evaluation  

 The three series of catalysts, Pt/Ru/meso-alumina, Cu/Ni/meso-alumina, and 

Cu/Ni/carbon were evaluated in USDA-ARS for hardwood-derived bio-oil HDO according 

to the detailed procedures provided in Chapter 2.  For data comparison, the catalyst: bio-

oil loading is defined as:  

𝐶𝐿𝑖 =  (
𝑥𝑐𝑎𝑡𝑤𝑐𝑎𝑡

𝑤𝑜𝑖𝑙
) ×100 

The cat:oil of base metal catalysts were 3 times of that of noble metal catalysts due 

to the particle sizes in fresh catalysts as demonstrated in Figure 3.25 to keep the total metal 

surface constant. The full comparison of single to bimetallic noble and base metal catalysts, 

prepared by CEDI as well as dry impregnation, is to be found in a collaborative publication 

with the team of Dr. Yaseen Elkasabi at USDA-ARS 96.  In this thesis, reactivity data is 

reported only for the CEDI-prepared bimetallic catalysts which in all cases performed 

better than the single metal and DI-prepared catalysts in terms of lowering oxygen content 

and increasing aromatic product yield.   

GC-MS and NMR were utilized to analyze the whole sample (gas phase and liquid 

phase) directly from the reactor, which allows for separation of the catalyst by dissolution 

into the deuterated solvent, without loss of lighter compounds. Concentrations of specific 

compounds that are more abundant in pyrolysis oil and HDO products were measured on 

GC-MS. A preliminary comparison can then be made with regards to catalyst selectivity. 

Tables 3.2 displays the GC-MS concentrations of specific compounds for which 

calibrations were carried out. Due to the complexity of composition in bio-oil and its HDO, 

concentrations of the most abundant compounds provide an accurate projection on the 

overall chemical nature and reactivity.  
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Highly reactive compounds like acetic acid, furfural, and acetol significantly 

reduced compared with bio-oil, with the latter two almost reducing down to zero.  

Cyclopentanone and its methyl derivatives were observed in product analysis which might 

be from the hydrogenation of species in starting bio-oil or subsequent intermediate species. 

Table 3.2. GC-MS concentrations of some dominant compounds detected in bio-oil HDO 

reactions with base metal catalysts. 

  bio-oil 2%Pt1%Ru/mA 1%Ni1%Cu/mA 1%Ni1%Cu/C 

Cat:oil --- 0.267 0.768 0.777 

Acetic acid 5.54 1.92 1.92 0.64 

Acetol  2.06 0.02 - 0.03 

Furfural 0.7 0.17 - 0.02 

Levoglucosan 2.66 0.04 - 0.03 

Cyclopentanone 0.03 0.25 0.27 0.19 

2-methyl-2-

cyclopenten-1-one 
0 0.58 0.71 0.07 

2-methyl-

cyclopentenone 
0.02 0.50 0.36 0.47 

Phenols/cresols 1.5 6.79 3.45 5.82 

Methoxyphenols  0.12 0.81 2.07 0.58 

Aromatic 

hydrocarbons 
0.05 0.21 1.63 0.42 

BTEX 0.05 0.09 0.76 0.26 

 

When comparing concentrations of phenols (which is one of the most abundant 

chemicals in bio-oil, including phenol, cresols, and 4-methylphenol) with the elemental 

analyses, the oxygen contents directly correlate with proportionally varying concentrations 

of phenols and methoxylated phenols.  When a mass balance is calculated, the total weight 

of phenols post-reaction outweighs the total phenols concentration in the original bio-oil 

which likely stems from the catalytic breakdown of higher molecular weight compounds. 

precious metal RuPt bimetallic catalysts gave significant increases in phenols 
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concentrations (6.79% v.s.1.5% in bio-oil); for NiCu bimetallic catalysts, 5.82% of phenols 

were yielded on 1%Ni1%Cu/C and that on 1%Ni1%Cu/meso-Al2O3.  This suggests that, 

for alkyl phenol production, bimetallic base metals improve the yield for carbon supports, 

while the effect of mesoporous alumina support dominates the effect of metal type.  

  The GC-MS measurements of aromatic hydrocarbons have the greatest significance 

in catalytic performance.  The production of hydrocarbons was observed on all three 

bimetallic catalysts and half of which categorized into BTEX.  The concentration of 

aromatic hydrocarbons increased 4 times on 2%Pt1%Ru/meso-Al2O3, and NiCu/C yielded 

7 times higher than the starting bio-oil; in particular, NiCu/meso-Al2O3 catalyst produced 

the highest amounts (1.63% v.s. 0.05% in starting bio-oil).  As is in the case with phenols, 

the effect of support dominates the effect of metal type.  The effect of meso-Al2O3 on NiCu 

is additive, producing the highest level of aromatic hydrocarbons.  

Table 3.3. Percentages of hydrogen belonging to functional groups, based on 1HNMR 

spectra integration. 

Chemical 

group(s) 

(hetero-) 

aromatics 

Alcohols, 

methoxy 
-aliphatics Alkanes 

 8.0 - 6.0 ppm 4.8 - 3.4 ppm 3.0 - 1.5 ppm 1.5 - 0.5 ppm 

bio-oil 8.7 34.8 44.3 12.2 

2%Pt1%Ru/mA 15.3 3.1 51.1 30.6 

1%Ni1%Cu/mA 25.2 4.2 48.9 21.7 

1%Ni1%Cu/C 19.8 3.6 51.6 25.0 

 

While the GC-MS results provide a window into the selectivity of compound 

formation, the compounds measured are only finite in number and of low absolute 

concentration.  For a more comprehensive observation on aromaticity and deoxygenation, 

we employed NMR spectroscopy. Using previously established criteria for bio-oil 



www.manaraa.com

58 

analysis97, all spectra demonstrate varying changes in the amounts of aromatics (8.0 – 6.0 

ppm), alcohols/methoxy groups (4.8 – 3.4 ppm), -aliphatics (3.0 – 1.6 ppm), and alkanes 

(1.6 – 0.5 ppm).  Generally, all samples increased in aromatics and aliphatics/alkanes and 

decreased in oxygenated hydrogens after 3 hours HDO reactions.  Specifically, Table 3.3 

displays the peak integration percentage values for the aforementioned regions.  All 

catalysts produced significant amounts of alkane hydrogens compared to starting oil (2-3 

fold increases), and the amount of -aliphatics showed minor variations from bio-oil.  All 

catalysts had comparable performance in significantly lower alcohols and methoxy 

hydrogens.  As for the production of aromatics, consistent with GC-MS results, meso-

Al2O3 supported NiCu presented the highest aromatic hydrogen amount, showing 25.2% 

of hydrogen in aromatic rings. Those for NiCu/C and PtRu/meso-Al2O3 were 19.8% and 

15.3% respectively, 2-3 fold greater than bio-oil. 

Based on the characterization in the previous section, NiCu/C and NiCu/ meso-

Al2O3 sintered and dealloyed to a similar extent (16.2 nm Cu, 22.1 nm NiCu and 17.4 nm 

Ni on C, 14.1 nm Cu, 24.6 nm NiCu and 16.3 nm Cu on meso-Al2O3).  Given the similar 

metal nanoparticle compositions, it is seen that the alumina support is superior to the carbon 

support for enhanced yields of aromatic products.  And on the same alumina support, it is 

the base metal catalyst and not the noble metal catalyst that has the better performance even 

though the noble metal nanoparticles remained relatively well dispersed and well alloyed. 

3.3 Conclusion 

Highly dispersed Ru and Pt monometallic catalysts were synthesized on SBA-15, 

Zr-SiO2, Al-SBA-15 and mesoporous Al2O3 by SEA, as seen in XRD and STEM. The 

hydrothermal stability of SiO2 was improved by Zr and Al incorporation and carbon 



www.manaraa.com

59 

coating; and such decoration had no effect on metal uptake and metal particle size. 

However, the modified SiO2 became unstable in high temperature tests (300 oC): Ru 

particles sintered to 4.2 nm on 4.8%Zr-SiO2; Ru and Zr leached out with carbon coating in 

10%C-4.8%Zr-SiO2; Al-SBA-15 dissolved during the test.  The self-synthesized meso-

Al2O3 was proved to be most promising support under high temperature hydrothermal 

conditions: 24% loss in surface area at 220 oC after 24 hours in water, and the BET surface 

area slightly increased from 245 m2/g to 306 m2/g after tested at 300 oC for 2 hours. In the 

high temperature, tested Ru catalyst, the amorphous Al2O3 transformed into boehmite, 

meanwhile, Ru particle size increased from 1.2 nm to 2.5 nm. 1%Ru-2%Pt/meso- Al2O3 

was prepared by co-SEA, showing highly dispersed and well alloyed formation by XRD, 

STEM and elemental mapping.  Particle sizes for precious metals exhibited minimal 

sintering under hydrothermal condition: showing an average size of 3.0 nm. 1.0%Cu-

1.0%Ni/meso-Al2O3, 1.0%Cu-1.0%Ni/C were prepared by citric acid dry impregnation, 

with 4.4 nm and 3.3 nm CuNi alloy particles respectively. Base metals sintered up to 25 

nm, and only a minor fraction of bimetallic nanoparticles remained after reaction.  Despite 

this, NiCu bimetallic catalysts yielded higher production of aromatic hydrocarbons than 

the noble metal catalyst.  Alumina was a much better support than carbon for the base metal 

catalyst.  Utilization of bimetallic base metal SEA catalysts on the stable mesoporous 

alumina support for HDO is a promising, inexpensive alternative but will require further 

stabilization.  
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Chapter 4 

Metal particle size control by ‘hard’ and ‘soft’ chemistry and size 

determination by powder XRD 1,2 

4.1 Introduction 

Supported noble metal catalysts have been widely used in chemical and energy 

production as well as environmental protection 22.  The number of active metal sites in 

catalyst is often described in terms of dispersion, or the ratio of metal sites existing at 

nanoparticle surfaces, divided by the total number of metal atoms.  Metal nanoparticles 

with 1 nm are considered to have 100% dispersion.  This is desirable in many cases; 

however, many reactions exist for which larger particle sizes give higher overall activity 

by virtue of greater numbers of certain sites such as terrace sites present only on larger 

particles.  The size dependence of many chemical reactions has not been studied in a 

systematic way (for example, there have been no reports on the systematic control of metal 

particle size); thus, it is important to have a method to produce a smoothly varying set of 

particle sizes which can be synthesized over the same support.  Two methods to tune metal 

                                                 
1 Subsection 4.2.1: reproduced from Ref. 70 (Q. Liu, U. A. Joshi, K. Über and J. R. 

Regalbuto, Phys. Chem. Chem. Phys., 2014, 16, 26431, DOI: 10.1039/C4CP02714K) 

with permission from the PCCP Owner Societies. 

 
2 Subsection 4.2.2: reprinted from Catalysis Today, Volume 280, Part 2, Qiuli Liu, Jadid 

Samad, John E. Copple, Somayeh Eskandari, Christine Satterwhite, John R. Regalbuto, A 

pinch of salt to control supported Pt nanoparticle size’, 1 February 2017, Pages 246–252.  

Copyright (2017) 
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particle sizes will be introduced in this session.  The first method is called as ‘hard 

chemistry’ where SEA prepared metal catalysts are treated at elevated temperature in 

humid reducing flow for extended time to sintered the particles to larger and larger sizes.   

In this way, series of catalysts with well-controlled ranges of particle sizes can be prepared 

over commercially viable, high surface area mesoporous SiO2 using common metal 

precursors.  

The other method was involving salt impregnation, named as ‘soft chemistry’.  In 

the course of the latter study we noticed a profound effect of the residual balancing ions 

from the precursor 75.  When cationic Pt tetraammine hydroxide, (NH3)4Pt(OH)2, was used 

as precursor with CEDI over silica, particles <1.5 nm could easily be synthesized over 

silica by drying the contacted paste and reducing in flowing hydrogen.  However, when Pt 

tetraammine chloride, (NH3)4PtCl2, was employed at the same conditions and pretreated in 

the same manner, the particles averaged 8.2 nm in size.  The size could be lowered back to 

<1.5 nm by eliminating the residual chloride by washing the (NH3)4PtCl2-based sample 

after impregnation 75 in Supplementary Information.  Chloride is often used to redisperse sintered Pt 

nanoparticles through an oxycholoride intermediate 98-100.  In the current study, however, 

we demonstrate that it as well as nitrate can be used to influence nanoparticle formation 

from the adsorbed ammine precursors and so sinter the evolved nanoparticles to a 

controllable extent.  This provides a simple way to synthesize a variety of particle sizes at 

constant metal loading.  In this way series of catalysts can be easily prepared to allow the 

study particle size on reactivity, which is a critical aspect of catalyst design for many 

reactions 71, 101-103.  We examine the effect of chloride and nitrate ions on Pt particles 

generated from tetraammine precursors over alumina, silica, silica-alumina, titania, and 
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carbon supports.  Pt particle size was determined by XRD, STEM and H2-chemisorption, 

which gave consistent results, and is correlated with Cl-/Pt and NO3
-/Pt atomic ratios; the 

residual ions have the greatest effect over carbon, and least effect over alumina and titania. 

X-ray powder diffraction is widely utilized in the field of catalysis. To obtain precise XRD 

data analysis, it is a requirement to separate background and noise from sample signal.  

Even though a better signal/noise ratio can be achieved by increasing the measuring counts, 

due to the limitation of standard scintillation counter detector, nanoparticles below 2 nm 

are barely visible in XRD patterns, especially when the metal loading is low.  The detection 

limit of conventional X-ray powder diffraction for nanoparticles in heterogeneous catalysts 

is 2-2.5 nm.  The application of silicon strip detector improves signal to noise ratio and 

ultra-small metal particles (down to 1 nm) can be detected thus.  The comparison between 

scintillation detector a) and latest D/tex Ultra b) are presented in Figure 4.1: Pt size is 

estimated as 8 nm with silicon strip detector, while the same sample shows worse-shaped 

diffraction buried by noise under the conventional detector, leading to complexities in size 

estimation. 

Characterization by conventional XRD barely provides no information on Pt 

particle size determination, especially for low Pt loading due to the poor detection 

sensitivity and large noise to signal ratio.  In the case of Pt/Al2O3 and Pt/Mo2C, utilization 

of XRD is further confined by the fact that γ-Al2O3 and Mo2C diffraction peaks overlap 

with Pt ones (Table 4.1). Accurate metal particle size in Pt/Al2O3 often relies on 

chemisorption 104-107 and TEM 104-105, 108-110, those techniques either requires energy input 

or time and money consuming.  On the other hand, the utilization of latest generation Si 

strip detector improves the sensitivity of XRD by a better signal to noise ratio, and small 
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particles (< 2 nm) can be detected.  Assisted by deconvolution software, we can separate 

support background from sample pattern regardless of the superposition of Pt and Al2O3, a 

much accurate HWHM value are achieved this way leading to a more accurate Pt particle 

size determination.   

 

 

Figure 4.1. XRD patterns of Pt/SiO2, γ-Al2O3 and Mo2C under scintillation detector a) and 

silicon strip detector b).  
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Table 4.1. Summary of diffractions of Pt, γ-Al2O3 and Mo2C. 

2θ 

(o) 

γ-Al2O3 2θ 

(o) 

Pt 2θ 

(o) 

Mo2C 

hkl hkl hkl 

31.94 220 - - 34.47 100 

37.60 311 - - 38.10 002 

39.49 222 39.76 111 39.49 101 

45.86 400 46.24 200 52.23 102 

60.90 511 - - 61.80 110 

67.03 440 67.45 220 69.57 103 

 

4.2 Results and discussion 

4.2.1 Particle size controlled by ‘hard chemistry’ 

7.6%Ru/SBA-15 and 5.4%Pt/SBA-15 were synthesized by SEA. Thermal 

treatment was first applied to these two catalysts.  XRD analysis was performed with a high 

sensitivity Si slit detector (D/teX Ultra, Rigaku) allowing detection of particles as small as 

about 1 nm.  The patterns for Ru/SBA-15 and Pt/SBA-15 are shown in Figures 4.2a and b 

respectively.  The broad peak around 21 degrees 2θ is due to amorphous silica.  The metal 

nanoparticles are below the detection limit of XRD, consistent with STEM results in Figure 

3.3.  No significant increase in particle size has been observed for the Ru/SBA-15 samples 

reduced at 500oC for 2h and 700oC for 2h.  The Ru/SBA-15 samples reduced at 900 oC for 

2h yields about 1.4 nm Ru particles.  Similar thermal treatment carried out for Pt/SBA-15 

is shown in Figure 4.2b: the average particle sizes do not change much up to reduction 

temperatures of 700oC. Sintering of Pt on SBA-15starts at 800oC, and at 900oC samples 

show mixed platinum-silicon phases (Pt64Si36 and Pt2Si, top pattern in Fig 4.2b).  

As there was no significant sintering of metallic Ru and Pt up to 700oC and 

900oC, respectively, harsher conditions were required.  A steaming-reduction process was 

employed using hydrogen saturated with water vapor for various times.  Based on the 
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results of Figure 4.2, 900 and 800oC reduction temperatures were selected for Ru/SBA-15 

and Pt/SBA-15 respectively.  Figure 4.3 displays the XRD patterns for the two metals at 

various steaming reduction times.  As the reduction time increases a gradual increase in 

particle size is observed.  For Ru/SBA-15 (Figure 4.3a), steaming reduction at 900oC for 

1 h gives particles of ca. 1.4 nm. At 12 hours, size is 2.8 nm, and at 2h, particles of 4.5 

nm are obtained as shown in Table 4.2.  

Table 4.2. Properties of Ru/SBA-15 and Pt/SBA-15 catalysts. 

Ru/SBA-15 
Pt/SBA-15 

 

Time 

(h) 

Particle size 

(nm) 

Surface Area 

(m2/g) 

Time 

(h) 

Particle size 

(nm) 

Surface Area 

(m2/g) 

0d 1.1 468 0d 1.3 340 

1 1.4 155 2 2.0 NA 

12 3.8 207 10 2.8 NA 

24 4.5 201 16 3.3 292 

 

A similar steaming-reduction process was performed at 800oC on Pt/SBA-15 with 

time varied from 2 to 16 h (Figure 4.3b).  This yielded particle sizes ranging from 1 nm to 

3.3 nm (Table 4.2).  The broad peak observed at 2θ = 38.72o in pattern a of Figure 4.3b can 

be deconvoluted as Pt3O4 (211) (35.92o) and Pt (111) (39.76o) (Fig 4.3c).  It appears that 

the smallest Pt particles (which are about 1.0 nm) can be substantially oxidized at room 

temperature.  Small particles of Pt have been shown by past EXAFS analysis to oxidize at 

ambient conditions; the current study indicates that the phase is Pt3O4. 

These results demonstrate that the size of noble metal particles supported on silica 

can be tailored with time and temperature of steam reduction.  However, these harsh 

conditions affected the pore structure of the SBA-15 support as revealed by surface area 

measurements before and after the reduction treatment. 
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Figure 4.2. The XRD pattern showing the effect of heat treatment on the a) Ru/SBA-15, all 

reduction proceeded 2 hrs at 300 oC, 500oC, 700 oC and 900 oC; and b) Pt/SBA-15 catalysts, 

reduction proceeded 2 hrs at 350oC, 700oC, 800oC and 900oC (3 hrs). No significant 

increase observed up to 700oC in both cases. 

 

Table 4.2 summarizes the BET analysis.  The pure SBA-15 support used with Ru 

had a surface area of about 486 m2/g with uniform pore size around 5 nm. For Ru/SBA-15 

catalysts, the 900°C steaming-reduction rapidly (one hour) diminished the surface area to 
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200 m2/g or below and the pore structure was completely destroyed.  The SBA-15 

employed for Pt had an original surface area of 340 m2/g and did not collapse so 

significantly (about 15%) at the 800oC steaming-reduction treatment for Pt. 

Table 4.3. Support properties. 

Support PZC 
BET surface area 

(m2/g) 

CEDI pore volume 

(mL/g) 

γ-Al2O3
 8.6 185 1.04 

SiO2 3.9 300 2.6 

TiO2 (calcined) 4.7 77 0.75 

Carbon 4.2 185 0.85 

Al-SBA-15 4.5 563 3.10 

 

HAADF-STEM images of Ru particles following steam reduction treatment at 24h 

in Figure 4.4 clearly show Ru sintering.  The particle size of 5.1 ± 0.6 nm was consistent 

with the XRD size estimate (4.5 nm) obtained from Fig 4.3a.  In many areas Ru particles 

smaller than 1 nm were observed to coexist with much larger particles as shown in Fig 

4.4b.  This is consistent with the Ostwald ripening mechanism of sintering as found recently 

by the Datye group for Ni particle sintering in hydrogen and moisture 111-112. In the present 

case, metal sintering is complicated by support sintering, even though the silica supports 

calcined at 900oC for 6h had an intact pore structure.  STEM images of the 24 h steam-

reduced samples (not shown) revealed no hexagonal pore structure.  The moisture content 

was thus responsible for the instability of the silica phase at 900oC.   

For catalytic applications, the collapse of pore structure is undesirable and so a 

method to sinter the well dispersed metal phase at lower temperature was devised, where 

only pinch salt was impregnated during catalysts synthesis by CEDI.  
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Figure 4.3. The effect of steaming-reduction time on particle size of a) Ru/SBA-15 at 900oC 

1 hr, 3 hrs, 6 hrs and 12 hrs SR, b) of Pt/SBA-15 at 800oC, 2 hrs, 10 hrs and 16 hrs SR; 

orange triangle shows the position of Ru and Pt peaks respectively; particle size in Table 

4.2. 
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Figure 4.4. HAADF-STEM images of Ru/SBA-15 after steaming reduction (a-c) and Ru 

particle size distribution (d). 

 

4.2.2 Particle size controlled by ‘soft chemistry’ 
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other supports were used as received.  The properties of the supports, including PZC, BET 

surface areas and pore volumes are presented in Table 4.3. 

All samples were synthesized by the method of Charge Enhanced Dry Impregnation 

(CEDI) as reported before 73: PTA-OH or PTA-NO3 was dissolved into a pore volume’s 

worth of 1M NH4OH.  With the exception of the mesoporous silica support, the amount of 

metal used corresponds to the amount able to be adsorbed on the respective surface by 

electrostatic adsorption, or about 0.8 micromoles/m2 for amorphous silica and titania (5 

and 1 wt% respectively), and about 0.5 micromoles/m2 for alumina and carbon (1 and 2 

wt% respectively).  For the very high surface area Al-dopes mesoporous silica, the metal 

content was limited to that of the amorphous silica to make 5 wt%.  Sodium chloride (NaCl) 

was added into the solution to achieve Cl- loadings from 0.1 to 1 wt%.  After thorough 

mixing, the thick slurries were oven dried at 85oC for 2 hours to evaporate excess water. 

The dried powder was then reduced for 1 hour in 10% H2/He at the optimal temperature 

determined by temperature programmed reduction (TPR), using a ramp rate of 5oC/min.  

a) Silica Supports 

A 5 wt% Pt/SiO2 series were made by CEDI using different amounts of NaCl and 

NaNO3 in the pH-adjusted PTA-OH solution for 0.1, 0.25, 0.5, and 1.0 wt% Cl-, and 0.8, 

1.7, and 3.4wt% NO3
-.  Cl- and NO3

--free samples were included as controls.  XRD 

characterization of these samples is shown in Figure 4.5.  Both salt-free control 

experiments show no XRD crystallinity, evidence that Pt particles less than 1.5 nm in size 

were prepared by CEDI.  With increased amounts of residual ions, Pt diffraction peaks 

become discernable.  In Figure 4.5a Pt particle size increased from <1.5 nm for the Cl- free 
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control to 7.2 nm for the 1 wt% Cl- sample.  NaCl was detected in the two highest loadings 

of Cl- (0.5 and 1.0 wt%).   

 
 

 

Figure 4.5. Salt effect on silica supported Pt particle size growth: Cl- ions a) cause a 

stronger aggregation than NO3
- ions b). 
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Figure 4.5.c) Pt deconvolution in 3.4% NO3
-
 impregnated sample. 

 

NaCl was replaced by NaNO3 in the samples prepared by the same procedure and 

the XRD patterns of the reduced materials are shown in Figure 4.5b. The absence of NaNO3 

from XRD patterns at higher NaNO3 loadings might be due to the lower melting point than 

that of NaCl.  The effect of nitrate was milder than that of chloride, but at the highest 

loading particles of average size was seen to be 5.6 nm (with 1.7 and 0.8wt% NO3
-, Pt 

particles remain small at 1.7 nm and <1.5 nm respectively).  The nitrate-added samples 

contain much more sodium than the chloride samples but are smaller in size; this suggests 

that Pt aggregation is mainly affected by the Cl- or NO3
- anions and not cationic Na+.  

The unusual sharp top of the Pt (111) peak, seen with a closer inspection of the 3.4wt% 

NO3
- sample in Figure 4.5b suggests that the particles have a bimodal size distribution, and 

in fact a fit for this sample in Figure 4.5c is well represented by a convolution of 3.3 and 

10.1 nm particles.  STEM characterization of the chloride free and a 0.25wt% chloride 
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containing silica supported sample supports the wider distribution as well as the particle 

size trend. Images and particle size distributions of these two samples are shown in Figure 

4.6a and b.  The chloride free sample has a relatively small average particle size and tight 

size distribution.  With the addition of chloride, not only is the average size larger, but the 

size distribution is much broader.  The STEM surface and volume size averages agree 

reasonably well with the chemisorption and XRD estimates for the silica supported 

samples, as summarized in Table 4.4.  

 

 

Figure 4.6. STEM images and particle size distributions for 5 wt% Pt/silica a) without 

chloride b) with 0.25 wt% chloride; insets are particle size distribution. 

 

Temperature programmed reduction can be used to diagnose metal-support 

interactions 72, 113-115.  TPR profiles of the 5 wt% Pt/SiO2 samples dosed with NaCl and 

NaNO3 are shown in Figure 4.7.  The addition of both salts causes the Pt precursor to reduce 

at lower temperature, and the chloride has greater effect than the nitrate.  Thus the reduction 

temperature is inversely proportional to particle size: lower reduction temperature 
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translates to larger particle size.  Reduction at lower temperatures might imply a weaker 

interaction of the precursor with the support surface, allowing more migration of Pt atoms 

during reduction.  

 

Figure 4.7. H2 consumption at lower temperature was absent in NaNO3-dosed and salt free 

samples. 
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to stay within alumina’s adsorption capacity.  The Al/SBA-15 sample has the capacity to 

adsorb 7.7 wt% Pt; 5 wt% was used for the sake of comparison with silica.   

 

 
Figure 4.8. XRD patterns from CEDI-prepared series of NaCl-doped a) 1w%%Pt/Al2O3 

and b) 5wt% Pt Al/SBA-15. 
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With Cl- wt% increasing from 0.1 to 1.0 over the alumina (Figure 4.8a), fcc Pt peaks 

became evident.  Size was estimated from the Pt (111) peak, which can be accurately 

deconvoluted from the (311) peak of the alumina support at 37.6o with the high sensitivity 

detector on the diffractometer 3 (A detailed discussion of this support subtraction and peak 

deconvolution procedure is given in the next section.).  Size was estimated to increase from 

1.8 to 5.6 nm as the chloride concentration increased (see Table 4.4).  Crystalline NaCl was 

not detected by XRD in any sample likely due to the higher affinity of chloride for the 

alumina surface.  The 5 wt% Pt Al/SBA-15 samples display more sensitivity to chloride 

concentration.  The Pt nanoparticles are larger at equivalent chloride loadings even though 

they start out smaller in the chloride free sample (1.1 vs. 1.4 nm as confirmed by STEM in 

Figure 4.9).  At 0.25 wt% Cl-, the alumina support yielded 3.1 nm particles, whereas over 

Al/SBA-15 the particles grew to 6.1 nm. 

STEM analysis on these samples was performed to gauge the effect of chloride on 

particle size and also on breadth of size distribution.  Representative STEM Z-contrast 

images and particle size distributions (insets) are shown in Figure 4.9a and b for the 

chloride free and chloride containing alumina support, and Figure 4.9c and d for the 

chloride free and chloride containing SBA-15 catalyst.  The smaller average size of the 

chloride free sample on Al/SBA-15 is confirmed (1.1 to 1.4 nm) and the 0.1 wt% Cl- 

Al/SBA-15 sample size, at 2.7 nm, is almost as large at the 0.25 wt% Cl-, alumina supported 

sample at 3.5 nm.  Furthermore, the wider distribution of both chloride-containing samples 

is seen. 
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Figure 4.9. Wider particle size distribution with presence of Cl- in 1wt% Pt/Al2O3 (d), 

5wt% Pt/Al-SBA-15 (b) than their salt free counterparts (c and a). 

 

The agreement of XRD, chemisorption, and STEM particle size estimates is quite 

satisfactory.  The values given in Table 4.4 for the silica and alumina supports show good 

overlap between the methods.  It is interesting that for the silica support, XRD size 

estimates are higher than chemisorption estimates, while for alumina, chemisorption 

estimates are higher than XRD estimates.  A possible explanation is that the Cl-, more 



www.manaraa.com

78 

strongly adsorbed over alumina, transports from alumina to Pt in a reducing flow 116, 

blocking sites and leading to less H2 chemisorption.  

Table 4.4. Summary of Pt size on SiO2, Al2O3, and Al-SiO2 determined by different 

techniques. 

Cl- wt% 

5 wt% Pt/SiO2 

XRD 

(nm) 

Chem 

(nm) 

STEM (nm) 

Dv Ds Dn 

0 <1.5 1.5 1.9 ± 0.4 1.8 ± 0.4 1.6 ± 0.4 

0.1 <1.5 2.0 - - - 

0.25 4.4 3.6 4.0 ± 2.4 2.9 ± 1.5 1.8 ± 0.9 

0.5 6.1 4.6 - - - 

1.0 7.2 6.6 - - - 

Cl- wt% 

1 wt% Pt/Al2O3 

XRD 

(nm) 

Chem 

(nm) 

STEM (nm) 

Dv Ds Dn 

0 1.5 1.8 1.4 ± 0.2 1.4 ± 0.2 1.4 ± 0.2 

0.1 1.8 3.3 - - - 

0.25 3.1 3.7 3.5 ± 0.9 3.3 ± 0.8 2.9 ± 0.7 

0.5 4.3 5.3 - - - 

1.0 5.9 5.6 - - - 

Cl- wt% 

5 wt% Pt/Al-SBA-15 

XRD 

(nm) 

Chem 

(nm) 

STEM (nm) 

Dv Ds Dn 

0 <1.5 - 1.1 ± 0.2 1.1 ± 0.2 1.0 ± 0.2 

0.1 2.9 - 2.7 ± 0.9 2.6 ± 0.7 2.4 ± 0.5 

0.25 6.1 - - - - 

0.5 6.9 - - - - 

 

b) TiO2 and Carbon Supports 

XRD was used to analyze the effect of chloride on two further supports, titania and 

carbon (See Table 4.3 for properties); these results are shown in Figure 4.10a and b 

respectively.  To stay below the electrostatic uptake limit, 2 wt% Pt/C and 1 wt% Pt/TiO2 

were prepared. 1 wt% Pt/TiO2 samples were reduced at 350oC, while the 2 wt% Pt/C series 

were reduced at 300oC to avoid methanation of the support.  
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Figure 4.10. XRD patterns from CEDI-prepared series of NaCl-doped a) 1 wt% Pt/TiO2 

and b) 2 wt% Pt/C. 
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Sodium chloride crystals accumulated over both supports at high salt loadings.  The 

pure anatase phase of titania is evident in Figure 4.10a, while peaks for graphitic carbon 

are evident for the Timrex material.  In both of these chloride free samples, Pt particles 

were below the limit of detection by XRD.  With increasing NaCl, Pt particles grew up to 

5.1nm on TiO2 (Figure 4.10a) and up to 11 nm on carbon (Figure 4.10b). Of all the supports, 

carbon showed the greatest sintering sensitivity to chloride.  Detailed Pt size determined 

by XRD are summarized in Table 4.5. 

Table 4.5. Summary of Pt size on carbon and titania. 

Cl- wt% 

2 wt% Pt/C 1 wt% Pt/TiO2 

XRD (nm) XRD (nm) 

0 <1.5 <1.5 

0.1 11.0 - 

0.25 8.2 3.5 

0.5 7.9 3.7 

1.0 10.5 5.1 

 

A comprehensive comparison of support sensitivity to chloride-induced precursor 

sintering is made in Figure 4.11 by plotting the particle size versus Cl-/Pt ratio for each 

support.  Size increases most rapidly for the carbon support tested, and almost as rapidly 

for the Al doped SBA-15.  Silica is also quite sensitive, not surprisingly like the Al doped 

mesoporous silica.  The supports which appear to best anchor the tetraammine precursor 

against sintering in the presence of chloride during reduction are alumina and titania.  

Continuing research is underway to understand the mechanism of nanoparticle genesis 
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from adsorbed precursors and how it is affected by residual anions.  One possible factor is 

the presence of hydroxyl groups serving as anchors to the metal particles; it is believed that 

the density of hydroxyl groups affects the rate of aggregation 101.  This would fit the 

observed trend reported here; alumina and titania are thought to have relatively high 

hydroxyl densities, of 8 and about 10 OH/nm2 respectively 117-118, values of 5 OH/nm2 are 

typically cited for silica 81, 119, and graphitic carbon has relatively little oxygen surface 

functionalities 120. In Figure 4.12, Pt particles sintering is correlated with OH densities on 

various supports with same Cl- loading (0.5wt% Cl-).  Pt particles sintered up to 8 nm on 

carbon and remained relatively small (3.7 nm) on TiO2. Al-SBA-15 is assumed to possess 

the same OH density as SiO2 since the Al loading is very low. 

 

Figure 4.11. Pt particle size versus Cl/Pt ratio for all supports studied. 
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An alternate explanation of the effect of Cl- could be electric double layer 

compression. This is a key feature of the strong electrostatic adsorption mechanism we 

have employed in the past 72-73, 75-76. The presence of Cl- or NO3
- at the adsorption layer 

might reduce the strength of the precursor-support interaction by locally increasing ionic 

strength. However, if this was the case, the supports with relatively low pore volume, C, 

Al2O3 and TiO2 (pore volumes are shown in Table 4.3) would experience higher ionic 

strength and greater weakening of electrostatic interaction, and more sintering. This is not 

observed: Al2O3 and TiO2 show the best ability of anchoring Pt precursor at higher ionic 

strength. 

 

Figure 4.12. Cl- effect on Pt sintering related with hydroxyl group densities on various 

supports. 
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samples do possess a relatively tight size distribution, this is not the case for the larger 

sizes.  Research on the production of more monodisperse sizes is continuing; it is hoped 

that further insight into the mechanism of nanoparticle formation and growth in the 

presence of residual ions will allow this finer level of control to be achieved. 

4.2.3 Supported Pt Particle Size Determination by Powder XRD with High Sensitivity 

Silicon Slit Detectors 

The enhanced sensitivity of silicon strip detector has been reported in literature 3: a 

series of Au catalysts supported on carbon were prepared at various weight loading (0.33 

to 3.0 wt%) by strong electrostatic adsorption (SEA) which is a simple and reproducible 

method to synthesize small nanoparticles 3, 70, 76, and characterized by both standard 

scintillation detector and silicon strip detector (D/teX Ultra), 1.3 nm Au particles were 

detected only by D/teX Ultra in 1 wt% Au/Carbon and the small particles were consistent 

with that from HRTEM which is 1.2 nm. In this paper, we demonstrate that the higher 

accuracy of Si slit detector is extendable to supported Pt particles. 

The series of Al2O3 supported Pt catalysts synthesized in Chapter 4.2.2 were 

characterized by powder XRD.  The superposition between Al2O3 and Pt peaks renders 

complexity to particle size calculation.  With the smooth data collected by high sensitivity 

silicon slit detector which allows an improved signal to noise ratio to detect particles around 

1 nm, Pt (111) peak (2θ=39.76o) can be deconvoluted from the γ-Al2O3 background, 

boehmite and Pt3O4 to yield particle sizes within the range of 1.8 to 4.3 nm.  The results 

are compared with STEM and H2-Chemisorption.  Another example of Pt/Mo2C also 

illustrates the accuracy of   deconvolution.  In this chapter, we demonstrate that the latest 

generation XRD detector provides a simple and quick way to determine Pt particle size 
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supported on alumina and molybdenum carbide.  Meanwhile, genesis of transitional 

alumina during the synthesis of catalysts is revealed. 

 Mo2C was synthesized by a temperature programmed reaction method previously 

developed 121-122.  Ammonium molybdate (para) tetrahydrate ((NH4)6Mo7O24.4H2O, 81-

83% as MoO3, Alfa Aesar) was sieved to obtain particle sizes between 125 and 250 µm.   

The Pt solution contained 500 ppm Pt using PTA-OH precursor and was sparged with He 

for 20 min prior to addition of Mo2C.  With continuous He sparging, the support could 

contact the solution for 5h while stirring every 15-20 min.  Solution was then poured out 

and analyzed by ICP to determine amount of Pt deposition.  Remaining sludge was 

transferred back to quartz tube and dried under H2 flow, followed by passivation as 

mentioned in supportive materials. 5.4 wt% Pt/Mo2C was prepared as described. 

As seen from Fig 4.13a to e, Pt particles are gradually growing bigger with NaCl 

loading increase, volume-based diameters are increasing from 2.1 nm (0.1 wt% Cl-) to 5.1 

nm (1.0 wt% Cl-), which will be compared with XRD results later. Dv, Ds and Dn are listed 

in Table 4.6.  Besides the evident increasing trend, as NaCl is doped, particle shape is 

becoming irregular and particle size distribution is turning into broader, standard deviations 

increase from 0.5 (0.1 wt% Cl-) to 1.2 nm (1.0 wt% Cl-).  In Fig. 4.13e, Pt particles are in 

bimodal, both small (1-2 nm) and large (5-8 nm) particles can be seen. 
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Figure 4.13. STEM of 1 wt%Pt on γ-Al2O3 with a) 0 wt%, b) 0.1 wt%, c) 0.25 wt%, d) 0.5 

wt% and e) 1.0 wt% Cl-, insets are Pt particle size distribution. 
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Results from H2-chemisorption are gathered in Table 4.6.  A pronounced difference 

between DS and Dchemi can be noticed on four Cl- added samples, particle sizes estimated 

by H2 chemisorption are larger than those by STEM, in the sample with 0.5 wt% Cl-, Dchemi 

is almost 1.5 times larger than DS.  On the other hand, in the Cl- free sample, DS and Dchemi 

match very well with each other.  The striking discrepancy is also observed in fuel cell. It 

is believed that Cl can block Pt surface therefore leading to a low reactivity 123: when 

H2PtCl6 was deposited onto carbon by strong electrostatic adsorption, a lower dispersion 

was derived from CO chemisorption than TEM, and reactivity was increasing after Cl was 

removed in post treatment in He flow at higher temperature (up to 750oC); Cl 

contamination was also reported when tetrochloroethylene which would decompose under 

redox condition was introduced to Pt/C, resulting in a significant loss in Pt surface atom 

availability 124.  In this work, it is assumed that chloride ions (from NaCl) impregnated 

during synthesis remain on the metal surface after 350oC reduction in H2 flow, and more 

Cl- added, more loss in accessible surface Pt.  Cl poisoning may occur resulting in a 

discrepancy in particle size determination between STEM and H2 or CO chemisorption.  

Further investigation on location of Cl- adsorption may help to explain why the difference 

between DS and Dchemi shrinks in 1.0 wt% Cl- sample. 

All five samples along with pure γ-Al2O3 were reduced in H2 flow and then 

characterized by D/tex detector.  The XRD patterns of Cl- impregnated Pt/Al2O3 in Fig. 

4.8a are presented here again as reported in previous publication 78, and dash lines are 

showing the position of Pt peaks.  Compared with pure support pattern, the one without Cl- 

impregnation shows barely no difference, indicating Pt particles are highly dispersed onto 

the surface of Al2O3 via the method of CEDI.  As increasing the Cl- loading in the sample, 
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the intensity of peak located at 39.7° which is assigned as Pt (111) is gradually increasing, 

and larger Pt particles are expected, but it is still masked by the (222) peak of the gamma 

alumina.  Therefore, background subtraction and peak deconvolution are necessary to yield 

accurate Pt particle sizes.    

Table 4.6. Pt particle size determination by different techniques. 

 

With the utilization of D/tex detector, a smooth XRD pattern was achieved, which 

is the premise to following deconvolution and obtain reasonable HWHM values.  Supports’ 

patterns were subtracted from all Pt deposited samples using Fityk software. Pt (111), (200) 

and (220) were fit using Gaussian to achieve FWHM values and particle size were 

calculated by Scherrer equation with a shape factor of 0.94.  The detailed subtraction and 

deconvolution procedure is described in Figure 4.14. 

 Dn σ Ds Dv Dchemi DXRD 

Cl free [28] 1.4 0.2 1.4 1.5 1.8 1.8, 2.2* 

0.1 Cl 2.1 0.5 2.3 2.4 3.3 2.2, 2.1* 

0.25 Cl [28] 2.9 0.7 3.3 3.5 3.7 2.7, 1.7* 

0.5 Cl 3.0 0.9 3.6 4.0 5.3 3.5, 1.8* 

1 Cl 4.0 1.2 4.7 5.1 5.6 4.3, 1.8* 

Pt/Mo2C - - - - - 5.0 
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Figure 4.14. Schematic diagram of deconvolution on Fityk. 
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Figure 4.15. Background-free XRD patterns of Cl- impregnated Pt/γ-Al2O3 a), example of 

deconvolution of Pt from boehmite and Pt3O4 in the sample with 0.5 wt% Cl- impregnated 

b) and Cl- free catalyst; dash lines: Pt. 
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Figure 4.15.c) Background-free XRD patterns of Cl- free catalyst. Solid lines: boehmite; 

dash lines: Pt. 

 

The background-free patterns (Figure 4.15a) were obtained by following the same 

procedure as described in Figure 4.14.  Estimated from Scherrer equation, Pt particle sizes 

range from 1.8 to 4.3 nm with 0-1 wt% Cl- impregnated in the sample.  Like wide 

distribution in STEM results, bimodal distribution was observed in those samples 

impregnated more than 0.10% Cl-: 4.5 and 1.6 nm, 6.3 and 2.1 nm7.3 and 2.4 nm. The 

weighted average size is presented in Table 4.6. Meanwhile, Pt3O4 was also noticed (Fig. 

4.15b and c), which was consistent with our recent submitted paper that Pt particles smaller 

than 2.5 nm are easily to be oxidized at room temperature leading to a mixture of metallic 

Pt, Pt3O4 shell-Pt core and pure Pt oxide 125.  Similarly, the Pt oxides in this case were from 
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considered (Figure 4.15b); whereas two were taken into consideration in Cl- free sample 

due to the larger size estimation as 2.2 nm (Figure 4.15c). 

As demonstrated in Fig. 4.15b, three broad peaks other than three Pt diffractions 

became discernible in all patterns, located at 28o, 38o and 50o (solid lines in Fig. 4.15b) 

which are indexed as phase transitional alumina.  The indiscernible transitional alumina 

peaks in original patterns indicate a minor phase transition during Pt catalysts synthesis.  

The appearance of the phase transition in the subtracted patterns signifies the low 

noise/signal ratio of D/tex detector.  In Tettenhorst’s work 126, boehmite was the only 

alumina hydrate shown in a series sample prepared from room temperature to elevated 

temperature and dried in oven; At lower temperature, XRD patterns showed broadened 

diffraction peaks with low intensity which were considered as finely crystallined beohmite. 

In the control experiments, where pure γ-alumina was impregnated with 1M 

NH4OH with same following treatments as Cl- doped series, there barely no difference from 

the fresh alumina can be observed in the raw patterns (Fig. 4.16a); the hydrated phase 

revealed by subtracting fresh γ-alumina pattern in the oven-dried sample (Fig.4.16b, red 

pattern); and the disappearance of transitional boehmite (Fig. 4.16b, blue pattern) in the 

sample reduced at indicates that complete dehydration occurred at such conditions.  It is 

assumed that 1M NH4OH solution speeds up the hydration of γ-Al2O3 to form oxi-

hydroxide (AlO(OH)), the base facilitation has been reported previously 127; then the 

majority of transitional alumina transforms to γ-Al2O3 during the H2 reduction at 350oC.  

While in the series with deposition of Pt particles, dehydration of boehmite is believed to 

be retarded, especially where is in close vicinity of metal particles, leading to the 

occurrence of boehmite in the XRD patterns even after reduction at higher temperature.  
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When taking a close look at the boehmite signals in Figure 4.15a, from bottom to top, we 

observed that the intensity of boehmite signals decreased with Pt size, which is consistent 

with the assumption, the less Pt blockage resulting from reduced perimeter cause less 

boehmite retention.   

 

Figure 4.16. a) NH4OH impregnated γ-Al2O3 subjected to low and high temperature 

treatment; b) Hydration and dehydration of γ-Al2O3.  
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 It has been reported that chemisorption cannot be used to determine metal size in 

Pt/Mo2C where chemisorption of typical probe molecules (H2 and CO) proceeded non-

selectively 122, on the other hand, powder XRD technique shed the light on Pt size 

determination in the case of 3.0wt%Pt/ Mo2C.  XRD patterns of Pt/Mo2C and 

deconvolution are presented in Fig. 4.17. The self-synthesized molybdenum carbide shows 

a typical pattern of β-Mo2C as reported in literature 128-129.  Dash lines are where Pt peaks 

are located.  Pt particle size is uncertain regardless of the manifest signal increase at 39.7° 

in the pattern of Pt/Mo2C.  Followed by the same procedure, Pt peaks are deconvoluted 

from Mo2C (Fig. 4.17b) and reveal a bimodal particle size distribution (Fig. 4.17b), 8.2 nm 

and 2.7 nm from Scherrer equation with average size of 5.0 nm.  A broad hump shows up 

in the range of 20-38° can be assigned to the phase transformation during thermal treatment 

of sample. 

 

Figure 4.17.a) Example of Pt size determination in Pt/Mo2C: Pt (111) diffraction overlaps 

with Mo2C (101). 
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Figure 4.17.b) Example of Pt size determination in Pt/Mo2C: Pt bimodal distribution after 

Mo2C subtraction and deconvolution. Dash lines: Pt diffractions. 

 

4.3 Conclusion 

In conclusion, supported Pt and Ru nanoparticle size series were synthesized by 

using strong electrostatic adsorption procedure followed by two thermochemical 

treatments. A high temperature steam reduction yielded particles from 1.1 nm to 4.5 nm.  

However, the steaming reduction procedure significantly affects the pore structure of SBA-

15 and drastically reduces the surface area.  A lower temperature oxidation – reduction 

procedure better preserves the support and gives a good size distribution of Pt 

nanoparticles, but cannot be effectively used with Ru due to ruthenium oxide volatilization.  

CEDI is a simple and reproducible method to deposit ultra-small metal particles on 

oxides as well as carbon.  It has been demonstrated that the Pt aggregation is caused by Cl- 

and NO3
- anions and not Na+ cations. Compared with NO3

-, Cl- accelerates Pt particle 

growth more.  A series of Pt catalysts with controlled particle size by doping NaCl are 
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synthesized on SiO2 (1.5~7.2 nm), Al-modified SiO2 (1.1~6.9 nm), TiO2 (1.5~5.1nm), and 

Al2O3 (1.5~5.9 nm).  The Cl- effect is most pronounced on carbon; with 0.1wt% Cl-, Pt 

particle size increased to 8 nm and reached a plateau of around 10 nm.  Pt particle size is 

correlated with the atomic ratio of Cl-/Pt.  This ratio is more important to Pt agglomeration 

than absolute Cl- loading.  A more gradual increase in Pt size with Cl-/Pt was observed in 

Al2O3 and TiO2 supported catalysts.  Further investigation into the “soft chemical” control 

of nanoparticle size is being made, including efforts to synthesize larger particles with more 

monodisperse size distributions. 

With the application o f D/tex detector, ultra-small metal particles (1.5 nm Pt) 

became detectable in XRD pattern which were invisible under conventional detector, and 

smooth patterns were guaranteed.  Highly dispersed and uniform Pt particles were 

deposited onto γ-Al2O3 by the method of CEDI.  A series of catalysts with various Pt 

particle sizes (from 2-5 nm) were prepared by controlling Cl- loading during synthesis. 

XRD patterns confirmed the growth of Pt particles, and accurate Pt particle sizes were 

obtained by Pt (111) deconvolution of smoothed XRD pattern from γ-Al2O3 (222) and 

boehmite.  Pt particles were assumed to prevent complete dehydration of transitional 

alumina which presented in the background-free patterns.  The deconvoluted results were 

consistent with STEM: DXRD matched volume-averaged particle size (DV) of STEM, and 

the discrepancy between surface-averaged particle size and H2-chemisorption might result 

from chloride contamination.  Pt peaks were deconvoluted from Mo2C and showed a 

bimodal particle size distribution in the sample of 3.0wt% Pt/Mo2C.  Further investigation 

needs to be proceeded to study the mechanism of chloride ions effect on metal particle 

growth. 
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Chapter 5 

Rational synthesis of Pd bimetallic catalysts for furfural conversion 

5.1 Introduction 

With diminishing non-renewable fossil resources, the production of hydrocarbon 

fuels and chemicals from renewable biomass resource has become more pressing in recent 

decades 27, 29, 130.  Furfural (C5H4O2), produced from acid-catalyzed hydrolysis and 

dehydration of hemicellulose in lignocellulosic biomass 27-28, is considered a key platform 

molecule in biomass conversion.  With multiple functional groups, furfural can be 

catalytically transformed into a variety of valuable chemicals through various routes 29, 

including furan, tetrahydrofuran, 2-methyl furan, 2-methyl tetrahydrofuran, furfuryl 

alcohol (FAL), tetrahydrofurfural alcohol(THFAL), cyclopentanone (CPO), and 

cyclopentanol (CPL). 

Cyclopentanone (CPO), a cyclic ketone, is a key intermediate chemical in the 

production of pharmaceuticals, fragrances and cosmetics, rubber chemicals and 

agrochemicals.  CPO can be prepared by various methods from multiple materials 131 and 

it is traditionally produced from adipic acid at 285-295°C in the presence of barium 

hydroxide, followed by distilling, extracting with ether and fractionating 132.  Driven by the 

rapid growth of pharmaceutical industry, the global demand for cyclopentanone market 

was valued at USD 100.0 million in 2014, and is expected to reach USD 130.0 million in 

2020 33.  As one of the downstream products of furfural hydrogenation, the production of 
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CPO from biomass based FFA might be an efficient way to expand the industrial 

application of biomass. 

  FFA conversion has been widely reported in literature, including decarbonylation 

to furans 34, hydrogenation to alcohols 35-36 and rearrangement to ketones 133.  Bimetallic 

Pd-based catalysts have recently been employed for these reactions, with the idea being 

that noble metal catalyzes hydrogenation and base metal sites participite C=O activation.  

However, little effort has yet been expended to optimize these catalysts.  The purpose of 

the work reported here is to demonstrate the effectiveness synthesis aimed at maximizing 

overall metal dispersion and metal1-metal2 interactions. 

Strong Electrostatic Adsorption (SEA) has been reported as an effective way to 

prepare highly dispersed nanoparticles on oxides and carbon 70, 72, 76.  In SEA, hydroxyl 

groups populating on the surface of support are protonated/deprotonated by adjusting the 

pH of the solution in contact with support away from its neutral point (the Point of Zero 

Charge, PZC), and exploiting the electrostatic interaction which occurs between the 

charged support and oppositely charged metal precursor.  The optimal conditions where 

maximum metal uptake occurs can be determined in a metal uptake vs. pH survey.  The 

strongest interaction between support and precursor rendered from SEA leads to a lessened 

migration of during thermal treatment to remove ligands, which results in smaller catalysts.  

SEA can be extended to prepare bimetallic catalysts: introducing a secondary metal 

precursor complex in the solution, simultaneous adsorption of two precursors occurs, and 

bimetallic catalysts with homogeneously alloyed nanoparticles are formed, as has been 

demonstrated for PtPd silica and carbon supported catalysts 82-83.  
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A method to make core-shell bimetallic catalysts is electroless deposition (ED), 

through which a shell metal is deposited in partial or multi-monolayers on a core metal 

(which itself can be synthesized at high dispersion by SEA).  Placing a second metal 

exclusively as a partial shell on a first metal core offers the ability to synthesize true 

bimetallic surfaces with no particles of each of the monometallic components.  ED 

proceeds catalytically or autocatalytically whereby a shell of controllable coverage of metal 

can be deposited selectively onto pre-existing core particles (or seed nuclei) of a pre-

existing metal.  The solution phase reducing agent only activated on the surface of metal 

particles, therefore, deposition of secondary metal is targeted onto the base catalyst 

particles or itself.  By controlling the base catalyst, secondary metal ion source, reducing 

agent, bath temperature, and pH, multiple bimetallic catalyst systems, such as Cu−Pd 86, 

Ag−Pt  87, Pt−Co 88, Au−Pd 84, and Ag−Pd 89  were successfully synthesized.  

In this work, we studied the catalytic conversion of furfural to cyclopentanone in 

water over Pd-Co and Pd-Cu bimetallic catalysts with due attention paid to achieving high 

metal dispersion and intimate metal1-metal2 contact.  Activity and selectivity are compared 

for silica supported Pd-Cu and Pd-Cu catalysts prepared by conventional dry impregnation 

(DI), simultaneous Strong Electrostatic Adsorption (co-SEA) and SEA followed by 

Electroless Deposition (SEA-ED).  And rational sysnthesis effect on catalysts resistence 

against particles sintering and dealloying are also examined by XRD. 

5.2 Results and discussion 

5.2.1 Monometallic and bimetallic catalysts synthesis by SEA and co-SEA 

The single metal uptake curves are shown in Figure 5.1. The silica slurry density 

was 1000 m2/l, and the Pd, Cu, and Co concentrations were 120, 100, and 100 ppm 
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respectively.  The surface density of Pd, Cu and Co cations adsorbed on SiO2 to a maximum 

surface density around 1.2 μmol/m2.  The Pd curve presented the typical volcano-shape of 

SEA, with increasing uptake as the pH increases from the PZC (3.3 for silica), whereas 

uptake is retarded in extreme basic condition from the strong ionic strength 94.  The uptake 

of Co at high pH stays high due to formation of Co phyllosilicate 72.  The pH window of 

Cu ammine solubility is very narrow, permitting only a few points to be tested.  The optimal 

pH to prepare monometallic Pd, Cu and Co catalysts are about 11, though a lower pH would 

be preferred for Co to prevent the formation of the phyllosilicate. 

 

Figure 5.1. Adsorption surveys of cationic Pd, Cu and Co over silica. 

Data for the simultaneous adsorption of metals is shown in Figure 5.2.  In these 

experiments the silica slurry thickness was again 1000 m2/l and the Pd, Co and Cu 

concentrations were 100, 40, and 40 ppm.  The lowered Co and Cu ammine concentrations 

were employed in view of the ultimate aim of preparing Pd/Co and Pd/Cu atomic ratios 
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near 1:1.  In co-SEA of Pd-Cu and Pd-Co, the total metal uptake topped at 1.2 μmol/m2 

which was consistent with that in single metal uptake.  The maximum surface density of 

these metal precursors is around 1.2 umol/m2 caused by steric hindrance in the method of 

SEA.  This maximum surface density of 1.2 umol/m2 corresponds with the retention of two 

hydration sheaths during adsorption, commonly observed in SEA.  The metal adsorption 

density cannot be further increased with beyond this, even with the increase in metal 

concentration of the mother solution.  In Fig. 5.2, we clearly observe the combined uptake 

of both metals totals to 1.2 umol/m2.  For cases where one metal adsorbs more strongly 

(Fig. 5.2a, Cobalt), we have a limited and fixed amount of cobalt at 0.5 umol/m2 (24 ppm 

Co) to promote palladium adsorption.  A narrower volcano-shaped curve also appears in 

the Pd-Cu experiment despite the narrow pH range of the survey.  The horizontal line in 

Pd-Co uptake (Figure 5.2a) indicated a complete adsorption of Co ions over the entire pH 

range.  That uptake of Co is as high as Pd, even though the Co concentration is lower, is 

explained by the higher valence of Co3+ versus Pd2+ 117.  Ultimately, two bimetallic Pd-Co 

and Pd-Cu catalysts were synthesized around pH 11.5 using 42 ppm Pd with 18 ppm Cu 

and 45 pm Pd with 24 ppm Co; these gave 1.2%Pd-0.5%Cu and 1.3%Pd-0.7%Co, 

corresponding to Pd and M2 (M2= Cu, Co) molar ratio of 1.4 and 1.0 respectively.  

Two bimetallic catalysts with the same loadings were prepared by incipient wetness 

using the same precursors. 

5.2.2 Bimetallic Pd-Cu catalysts synthesized by ED 

To compare bimetallic core-shell particles to those prepared by co-SEA and co-DI, 

one additional series of Cu catalysts was prepared by applying Cu as partial shells to Pd 

cores, which are the highly dispersed Pd monometallic samples described above.  The 
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development of ED bathes for Cu+ deposition have been described before 134 , where 

electroless deposition baths were prepared using Cu(CN) as the source of Cu+, hydrazine 

as the reducing agent in pH 9.5 solution.   

 

 

Figure 5.2. Simultaneous metal uptake of a) PdCo and b).PdCu on SiO2. 
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One hundred mL of 20 ppm and 10 ppm Cu+ were prepared, and after 0.4 grams of 

1.3% Pd/SiO2 was added into the ED solution, N2H4 was pumped into the ED bath 

continuously for 1 hour, with the molar ratio of reducing agent to Cu+ of 4.1 and 8.2 at the 

end of the process.  The depletion of Cu from the ED bath as a function of time is shown 

in Figure 5.3.  Two Cu-Pd bimetallic catalysts were synthesized as such, corresponding to 

0.4%Cu-1.3%Pd and 0.2%Cu-1.3Pd, with theoretical coverage of 0.9 and 0.5 monolayer 

of Cu on Pd.  The actual Cu coverage determined by pulse hydrogen chemisorption closely 

agreed with these values, implying that the Cu deposition proceeded in catalytic pathway 

and Cu deposited selectively on Pd surface instead of itself or on SiO2. 

A total of five monometallic catalysts including Cu-only, Co-only, and Pd catalysts 

at three weight loadings and six bimetallic catalysts were synthesized for evaluation in 

furfural rearrangement.  A summary of these catalysts and their characterization by XRD 

are summarized in Table 5.1. 

5.2.3 Characterization by XRD, STEM and TPR 

Fig.5.4a shows the XRD patterns of Cu, Co and Pd catalysts supported on SiO2 

from top to bottom. The broad feature at 22o stems from amorphous SiO2.  No Pd or Co 

peaks were observed in the XRD patterns, implying that Pd particles and Co particles are 

below the detection limit of the instrument, which is about 1.5 nm 3, 125[20]. On the other 

hand, in the sample of 2.3% Cu/SiO2 (blue pattern), CuOx peaks (36o and 47o) became 

discernable.  After support subtraction from the original pattern followed by the procedure 

in our previous work 78, CuOx peaks were clearly discernable (Figure 5.4b), and sized at 

2.0 nm based on Scherer equation.  It is well-known that small Cu particles tend to be 

oxidized at ambient conditions. 
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Figure 5.3. Cu deposition on 1.3%Pd/SiO2 by electroless deposition. 

 

 

Figure 5.4 XRD profiles of a) SiO2 supported monometallic Cu, Co and Pd. 
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Figure 5.4.b) XRD deconvolution of CuOx from support and background. 

 

XRD analysis of the bimetallic Pd-Co and Pd-Cu catalysts is given in Figure 5.5.  

Diffraction peaks were not observed for SEA- and ED-derived bimetallic Pd-Cu and Pd-

Co catalysts, indicating bimetallic particles were less than 1.5 nm.  Before Cu deposition, 

Pd size was smaller than 1.5 nm (Figure 5.4a), and bimetallic Cu-Pd remain small as the 

Cu coverage was less than 1 monolayer.  Pd peaks appeared only in the two DI-prepared 

counterparts. In the 1.3%Pd-0.7%Co DI catalyst, metallic 8.1 nm Pd and 8.5 nm Co werge 

seen, and Pd and Co is believed to exist largely as separate clusters since the Pd and Co 

diffraction peaks appear unshifted from the pure metals.  On the other hand, in the 1.2%Pd-

0.5%Cu DI catalyst, four peaks are deconvoluted in the region between Pd(111) and 

Cu(111), and correspond to pure Pd, a Pd rich and a Cu rich Pd-Cu alloy and pure Cu, all 

metallic.  (A diffractometer with a latest-generation, high sensitivity solid state detector 

makes the observation of sub-2 nm nanoparticles and such deconvolutions possible 3, 78.)  
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Peaks and peak breadths at 40.2o, 41.2o,42.4o and 43.0o were indexed as metallic Pd (8.6 

nm), Pd-rich Pd-Cu alloy (12.9 nm), Cu-rich Pd-Cu alloy (6.7 nm) and metallic Cu (20.2 

nm) respectively.  There was no sign of CuOx in the DI catalyst which can be explained 

by the resistance to oxidation of larger particles.  The weak interaction between metal 

precursors and support with the DI preparation account for the larger particles in the two 

DI catalysts. All metal particle sizes are summarized in Table 5.1. 

 

 

Figure 5.5.a) XRD patterns of bimetallic catalysts prepared by DI, SEA and ED XRD and 

b) deconvolution of Pd, Cu and PdCu alloy in DI prepared bimetallic catalyst. 
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Table 5.1. Catalysts synthesis and size determination. 

 

Figure 5.6 displays representative STEM images for 2.1%Pd-1.0%Cu and 1.3%Pd-

0.7%Co by co-SEA and their corresponding particle size distributions.  Homogeneously 

distributed metal particles with tight size distribution were seen in both catalysts.  No 

agglomerates or large particles were seen in any image.  The average size of each was 1.1 

± 0.2 nm by counting 500 particles.  The small sizes are consistent with the particles being 

below the limit of XRD detection.  The composition of seven individual nanoparticles was 

measured for each sample by spot x-ray analysis.  For Pd/Co, all seven showed the 

simultaneous presence of Pd and Co, with an average atomic ratio of 0.6:1, lower than the 

nominal 1:1 ratio, while seven Pd-Cu nanoparticles all showed the simultaneous presence 

of Pd and Cu and averaged an atomic ratio of 1:1, again lower than the 1.4:1 nominal 

# Catalyst Precursor Prep. method Part. size (nm) 

1 0.7%Pd [Pd(NH3)4]
2+ SEA <1.5 

2 1.3%Pd [Pd(NH3)4]
2+ SEA <1.5 

3 3.3%Pd [Pd(NH3)4]
2+ SEA <1.5 

4 2.3%Cu [Cu(NH3)4]
2+ SEA 2.0 (CuOx) 

5 0.8%Co [Co(NH3)6]
3+ SEA <1.5 

6 
1.2%Pd-

0.5%Cu 

[Pd(NH3)4]
2+ 

[Cu(NH3)4]
2+ 

co-SEA <1.5 

7 
1.2%Pd-

0.5%Cu 

[Pd(NH3)4]
2+ 

[Cu(NH3)4]
2+ 

DI 

8.6 (Pd) 

12.9 (Pd rich-Cu) 

6.8 (Pd-Cu rich) 

20.2 (Cu) 

8 
[b]0.4%Cu-

1.3%Pd 

[Pd(NH3)4]
2+ 

[Cu(CN)2]
- 

SEA-ED <1.5 

9 
[c]0.2%Cu-

1.3%Pd 

[Pd(NH3)4]
2+ 

[Cu(CN)2]
- 

SEA-ED <1.5 

10 
1.3%Pd-

0.7%Co 

[Pd(NH3)4]
2+ 

[Co(NH3)6]
3+ 

co-SEA <1.5 

11 
1.3%Pd-

0.7%Co 

[Pd(NH3)4]
2+ 

[Co(NH3)6]
3+ 

DI 
8.1 (Pd) 

8.5 (Co) 
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loading, but higher than the Pd-Co ratio as expected.  The limited number of particles for 

analysis could well be the source of absolute discrepancy in ratios. 

 

 
 

Figure 5.6.a) STEM micrographs and c) particle size distributions of SEA-prepared SiO2-

supported 2.1%Pd-1.0%Cu bimetallic sample.b) STEM micrographs and d) particle size 

distributions of SEA-prepared SiO2-supported 1.3%Pd-0.7%Co bimetallic sample. 

 

TPR results demonstrated a dramatic difference in reducibility of SEA- versus DI-

prepared Pd-Co catalysts.  In Figure 5.7, the high temperature reduced Co species (700oC) 

shifted towards low temperature reduced Pd (200oC) in the co-SEA catalyst and initiated 
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around 350oC.  The intimacy between the two metals explains the substantial decrease in 

reduction temperature, due to hydrogen spillover from closely interacting Pd sites.  The 

TPR profile of the DI sample can be explained by poorer interaction of Pd and Co.  In this 

case, the larger Pd particles were believed to be reduced at much lower temperature than 

the SEA counterpart, and peaks around 290oC and 350oC were assigned as reduction of 

Co3O4, which has been reported in literature 135, corresponding to Co3+ to Co2+ and Co2+ to 

Co0 respectively.  The reducibility of Pd-Cu bimetallic catalysts almost remained 

unchanged (not shown) due to the similar reductive properties of Pd and Cu ammine 

precursors; both are around 200oC. 

 

Figure 5.7. Reducibility change in bimetallic catalysts from H2-TPR profiles. 
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5.2.4 Catalytic evaluation in furfural conversion 

The bimetallic effect on activity/selectivity and preparation methods effect on the 

product distribution were investigated. A summary of the eleven catalysts‘ reactivity in 

furfural hydrogenation is listed in Table 5.1.  Selectivity is reported at various levels of 

furfural conversion. The possible pathways reported in literature are shown in Scheme 5.1  

43-44, 136.  

 

Scheme 5.1. Proposed pathway of furfural conversion in literature.  

After the 3-hour run at 150oC with 430 Psig hydrogen partial pressure, products 

detected included furfuryl alcohol (FAL), tetrahydrofurfuryl alcohol (THFAL), 

cyclopentanone (CPO), cyclopentanol (CPL), furan (FRN) and levulinic acid (LA).   

However the last three chemicals were observed in only trace amounts, as shown in the gas 

chromatogram of Figure A1. Thus the only appreciable reaction products are those 

appearing in Scheme 1.  The results of furfural hydrogenation on monometallic Co, Cu and 

Pd catalysts is shown in Figure 5.8a.  The amount of catalyst used varied in the range 

0.115~0.297 grams to maintain the same number of moles (0.042 mmoles) of metals.  

Among these three catalysts, Co was inactive in these reaction conditions (water solvent), 
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likely because Co remained oxidized.  Pd showed the highest conversion and selectivity to 

FAL (70%). However, the selectivity of CPO was only 28% over 1.3%Pd/SiO2. CPO was 

observed as only product on Cu catalyst which converted 17% of  FFA in 3 hours.  The 

intrinsic catalytic acvitivy as denoted by the chemisorption-derived turnover frequency 

(TOF) was 10 times higher for the Pd monometallic catalyst than the Cu catalyst (0.188 s-

1 vs 0.016 s-1) as displayed in Table 5.2. 

Figure 5.8b shows the results of the series of SEA-prepared Pd monometallic 

catalyst in which a constant amount of catalyst (266 mg) was used.  (These catalysts were 

also used for the Madon-Boudart test as described in the experimental section below.)  

Conversion increased in proportion to metal loading from 16% to 90% and the trend in 

FAL production, rising and then falling, supports the consecutive reaction pathway 

proposed in the literature 43-44, 136, with the first step of hydrogenation of FFA to FAL and 

the second step of parallel pathways of further hydrogenation of FAL to THFAL or FAL 

ring rearrangement to a key intermediate to CPO.  It has been reported that Pd catalysts 

favorhydrogenation of aldehyde and its furfural hydrogenation to THFAL in aqueous phase 

FFA conversion 36, 40.  The current results, however, show little accumulation of THFAL, 

and much higher selectivity toward CPO.  This may be a consequence of Pd particle size. 

Detailed product distributions for these runs are plotted in Figures A2-A4. 

The monometallic 2.3% Cu catalyst (Figure 5.8a) gave only 17% conversion and 

the 100% selectivity to CPO compared to the same number of moles of Pd.  The absence 

of the FAL intermediate over Cu can be explained by Cu sites having high facility for the 

ring rearrangement step, but poor activity for the hydrogenation step; as soon as the FAL 
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forms in a slow step it rearranges.  In a previous report 137, the rearrangement of FAL 

occured in water without presence of catalyst; and in Zhang’s work 138, the ring 

arrangement of FAL was catalyzed by weak acidity of media: the yield of 4-

hydroxycyclopent-2-enone (product of ring arrangement of FAL, intermediate to CPO) 

was 53.5% at 240oC in water with no catalysts.  This may first be due to the lower reaction 

temperature, and second, to the acidic pH of the reaction medium which was determined 

to be in a range of 3.0 to 3.5 for both monometallic and bimetallic catalysts (see Table A1).  

In this narrow range and in the presence of catalyts, the selectivity to CPO was dramatically 

different on monometallic Pd and Cu catalysts (28% v.s. 100%) and the variance in CPO 

production was also observed on bimetallic catalysts wich will be presented later.  Thus 

the effect of the liquid phase on selectivity is believed to be insignificant in this work. 

From there monometallic results, it may be envisioned that a combination of Pd and 

Cu would operate synergistically whereby the high hydrogenation activity of the Pd could 

be coupled with the high ring arrangement activity of the Cu.  The optimized catalyst would 

give high furfural conversion with high CPO selectivity, with greatly reduced amounts of 

Pd.  To this end, the middle loading of 1.3% Pd was chosen as a basis, and Pd-Cu catalysts 

were prepared by different methods, while maintaining Pd: Cu in the range of 1.1 ~1.4. Pd-

Co was also synthesized to study whether Pd can also be promoted by Co , per literature 

reports 44, 139.  

Pd-Cu and Pd-Co bimetallic catalysts were evaluated under same conditions as 

monometallic catalysts. Reaction rates werecompared at 10% FFA conversion and 

selectivity is reported as various times. The number of moles of Pd (0.042 mmoles) was 

maintained constant by varying the mass of catalyst in the reaction.  Pd-Cu bimetallic 
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catalysts were prepared by co-SEA, SEA-ED and co-DI, and the Pd-Co catalysts by co-

SEA and co-DI. 

 

 

Figure 5.8.a) Catalytic evaluation over Pd, Co, Cu monometallic catalysts; b) Catalytic 

evaluation over three loadings of Pd monometallic catalyst. Reaction conditions: 3 grams 

FFA in 57 grams H2O at 150oC with total pressure of 500 psig; agitation speed, 1000 rpm; 

reaction time, 3 hours. 
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In Witonska’s study, the addition of copper only slightly influenced the activity of 

Pd/Al2O3, while it significantly modified its selectivity to 36.  As summarized in Table 5.2, 

at low conversion there was no difference in product distribution between Pd monometallic 

and PdCu bimetallic catalyst; as reaction continued, the production of CPO was markedly 

increased on the bimetallic catalyst (Figure 5.9): the selectivity to CPO tripled to the same 

level as observed on the 3.3%Pd/SiO2 (Figure 5.8b) which can be attributed to the close 

interaction of Cu sites with Pd sites to promote rearrangement to CPO.  TOF increased 

nearly 3 folds on 1.2%Pd-0.5%Cu co-SEA (0.471 s-1, Table 5.2 ) catalyst compared to 

monometallic 1.3%Pd SEA (0.188 s-1, Table 5.2) which also can be explained by PdCu 

bimetallic formation rendered by rational syntheis of co-SEA.  Since the bimetallic 

particles remained small (1.1 nm per STEM, Figure 5.6), none of the Pd activity was lost 

(Figure 5.9); that is, the Cu alloying did not dilute the number of Pd sites at the catalytic 

surface.  The parallel hydrogenation product THFAL was only detected in small quantities 

at the very end of reaction.  The reactivity of three catalysts of approximately the same 

nominal composition, but prepared by different methods, is compared in Figure 5.10.  Two 

catalysts, the co-SEA and co-DI, had compostions of 1.2% Pd and 0.5% Cu, while the 

SEA-ED catalyst had 1.3%Pd and 0.4% Cu.  From the XRD and STEM characterization 

above, the co-SEA sample is believed to be homogeneously alloyed nanoparticles, highly 

dispersed, the DI is a mixture of poorly dispersed particles of pure Pd, pure Cu, a Pd rich 

alloy, and a Cu rich alloy.  From chemisorption results described above, the SEA-ED 

sample is thought to be almost a full mmonolayer of Cu over highly dispersed Pd cores.  

These morphologies are sketched into the bar chart for the sake of convenience. 
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The preparation method has a profound effect on reactivity (Figure 5.10).  The 

activity and selectivity of the SEA-ED sample are similar to the pure Cu sample in Figure 

5.9, even though the amount of Cu is several times lower.  It would appear that the Pd cores 

serve as support for highly dispersed Cu, present as a nearly full monolayer, and so its 

activity becomes similar to the lower dispersion, pure Cu sample.  The DI sample gives 

even lower activity, and the high selectivity to CPO indicates that the ratio of Cu surface 

to Pd surface is high.  

 

Figure 5.9. Pd-Cu alloying effect. Reaction conditions: 3 grams FFA in 57 grams H2O at 

150oC with total pressure of 500 psig; agitation speed, 1000 rpm; reaction time, 3 hours; 

catalyst ranged from 0.11 g to 0.27 g to keep metal/FFA molar ratio constant between 

monometallic catalysts, and Pd/FFA molar ratio constant between Pd monometallic and 

bimetallic catalysts. 
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Figure 5.10. Preparation method effect. Reaction conditions: 3 grams FFA in 57 grams 

H2O at 150oC with total pressure of 500 psig; agitation speed, 1000 rpm; reaction time, 3 

hours; Constant catalyst/FFA ratio. 

 

A final series of SEA-ED Pd catalysts with various Cu coverage were tested to 

relate θCu and catalytic performance. Figure 5.11 shows that activity decreased with 

increasing Cu coverage; at 0.9 θCu the activity and selectivity were, as mentioned above, 

virtually equivalent to the monometallic Cu catalyst.  The interesting feature in this set of 

experiments is the intermediate Cu coverage catalyst (θCu = 0.5, 1.3%Pd, 0.2%Cu), which 

is the only catalyst formulation in this study which gives significant amounts of THFAL 

product (43% to 57% CPO) with no FAL observed.  The moderate amount of Cu on the Pd 

surface would appear to generate bimetallic surface sites very reactive toward FFA, while 

mitigating the ring rearrangement ability of the Cu surface while opening the secondary 

hydrogenation pathway.  The only other catalyst showing observable amounts of TFHAL 

where the co-SEA catalysts at long reaction time; the same type of bimetallic site may have 
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been operative in those nanoparticles.  Yuan et al. 140 observed THFAL to be the main 

product via bimetallic synergy from small portions of Pd with supported Ni. High pressure 

also appears to increase THFAL yield; in Biradar’s work, at 725 psig over a 3%Pd/C 

catalyst, the THFAL yield was more than 40% 38.  The turnover frequencies of 0.4%Cu-

1.3%Pd SEA-ED and 0.2%Cu-1.3%Pd SEA-ED were slightly higher than that of 1.3%Pd 

SEA, 0.263 s-1and 0.215 s-1 respectively, however, only half of 1.3%Pd-0.5%Cu co-SEA, 

which, again, indicates that bimetallic formation plays crucial role here. Meanwhile, the 

amount of PdCu alloy is limited in the catalysts synthesized by SEA-ED method which is 

consistent with H2-chemisorption results that Pd surface is covered by Cu particles.  Even 

with almost full monolayer of Cu coverage, the TOF on 0.4%Cu-1.3%Pd SEA-ED was 

enhanced by the small amount of PdCu alloy compared to 2.3%Cu SEA (0.016 s-1). 

The reactivity of the Pd-Co catalysts is shown in Figure 5.12.  The introduction of 

cobalt failed to improve the overall catalytic activity on PdCo catalyst, even with high 

dispersion bimetallic particles in co-SEA prepared catalyst.  As displayed in Figure 5.12, 

FFA conversion dropped 60% on the monometallic Pd catalyst to 38.5% and 2.5% on 

1.3%Pd-0.7%Co co-SEA and 1.3%Pd-0.7%Co DI respectively.  The CPO selectivity was 

enhanced by Co existence as observed in PdCu bimetallic catalyst.  PdCo alloy in 1.3%Pd-

0.7%Co co-SEA facilitated the reaction at the early stage, the TOF was at the same level 

as 1.3%Pd-0.5%Cu co-SEA. The lower conversion on 1.3%Pd-0.7%Co co-SEA than 

1.3%Pd-0.5%Cu co-SEA results from the great dealloying in the catalyst which will be 

presented and discussed in Post-reaction characterization.  The higher activity of the PdCo 

co-SEA than the DI catalyst can be attributed to the well dispersed bimetallic particles 

shown in XRD and STEM.  
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Figure 5.11. Copper coverage effect. Reaction conditions: 3 grams FFA in 57 grams H2O 

at 150oC with total pressure of 500 psig; agitation speed, 1000 rpm; reaction time, 3 hours; 

Constant Pd/FFA ratio. 

 

Figure 5.12. Pd-Co bimetallic effect on FFA conversion to CPA. Reaction conditions: 3 

grams FFA in 57 grams H2O at 150oC with total pressure of 500 Psig; agitation speed, 1000 

rpm; reaction time, 3 hours; catalyst ranged from 0.15 g to 0.26 g to keep metal/FFA molar 

ratio constant between monometallic catalysts, and Pd/FFA molar ratio constant between 

Pd monometallic and bimetallic catalyst. 
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5.2.5 Post-reaction Characterization 

XRD characterization of used catalysts is shown in Figure 5.13. Diffraction peaks 

were observed after 3-hour reaction for all monometallic and bimetallic catalysts. The 

monometallic Pd catalyst sintered to 4.8 nm after use (center pattern). The two SEA-ED 

samples are the top two patterns in the figure; the 0.5 ML Cu sample (0.2%Cu-1.3%Pd) 

sintered to 4.9 nm with a (111) peak position shifted toward Cu which indicates some 

degree of alloying as the Pd core sintered.  While the half monolayer of Cu on Pd did not 

enhance the ability against sintering during reaction, the 0.9 ML shell (0.4%Cu-1.3%Pd) 

did, as the nanoparticles sintered only to 3.5 nm.  This pattern appears to be a combination 

of a Pd rich and a Cu rich phase, suggesting that while some alloying had occurred, the 

particles may still be in a Pd-rich core, Cu-rich shell morphology which is a reflection of 

the initial morphology. 

  

Figure 5.13. XRD analysis of spent Pd bimetallic catalysts prepared by SEA and ED. 
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Table 5.2. Summary of catalytic performance over mono- and bi-metallic catalysts. 

 

The co-SEA Pd-Cu and Pd-Co samples, the lower two patterns of Figure 5.13, also 

showed increased resistance to sintering compared to pure Pd, with average sizes of 2.5 

and 3.6 nm, respectively.  The largest degree of alloying ((111) peak shift) of all bimetallic 

catalysts is seen for the co-SEA prepared PdCu catalyst.  A careful deconvolution of the 

co-SEA Pd-Cu pattern (Figure 5.14a) reveals a combination of small (1.4 nm) and larger 

(3.4 nm, for the overall average of 2.5 nm) particles.  This suggests that particles grow by 

particle migration, but in any event, the homogeneity of alloying is maintained as particle 

growth occurs.  Once again, even while sintering has occurred the initial surface 

Cat. Conv.: 15±5% Conv.: 40±5% Conv.: 60±5% 
Rate 

[*105 

mol 

FFA/(g 

Pd*s)] 

TOF 

(s-1) 
 CPO FAL 

THF-

AL 
CPO FAL 

THF-

AL 
CPO FAL 

THF-

AL 

0.8% Co, 

SEA 
- - - - - - - - - 0 - 

2.3%Cu, 

SEA 
100 0 0 - - - - - - 9.0 0.016 

1.3% Pd, 

SEA 
0 100 0 15.1 84.9 0 28.1 71.9 0 71.0 0.188 

1.2%Pd-

0.5%Cu, 

co-SEA 

4.7 93.7 0 15.3 84.8 0 86.9 8.5 4.6 84.4 0.471 

1.2%Pd-

0.5%Cu 

DI 

100 0 0 - - - - - - 4.6 - 

0.4%Cu-

1.3%Pd, 

SEA-ED 

100 0 0 - - - - - - 9.5 0.215 

0.2%Cu-

1.3%Pd, 

SEA-ED 

14.9 85.1 0 57.0 0 42.9 - - - 45.4 0.263 

1.3%Pd-

0.7%Co, 

co-SEA 

22.2 77.8 0 69.9 22.2 7.9  - - 10.5 0.518 

1.3%Pd-

0.7%Co, 

DI 

100 0 0 - - - - - - 0.23 - 
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composition is maintained.  The structure-function relations derived for the initial Pd-Cu 

catalyst morphologies would also appear to extend in good part to the spent catalysts. 

In the spent co-SEA Pd-Co catalyst (bottom pattern of Figure 5.13 and Figure 5.14b), 

pure Pd is revealed by the position of the (111) peak being that of the pure metal. The 

pattern can be deconvoluted into 3.6 nm pure Pd particles and also 2.0 nm cobalt oxide 

particles in addition to some remaining PdCo alloyed particles (2.3 nm).  Thus this 

catalyst appears to have dealloyed significantly. 

 

Figure 5.14.a) XRD deconvolution of spent PdCu co-SEA catalyst  
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Figure 5.14.b) XRD deconvolution of spent PdCo co-SEA catalyst. 

 

5.3 Conclusion 

SEA and co-SEA preparations yielded ultra-small (about 1 nm) single metal Pd, Cu, 

and Co and homogeneously alloyed PdCu co-SEA and PdCo co-SEA nanoparticles 

supported on silica.  When added as shells via ED to the SEA-synthesized Pd cores, Cu 

was deposited as one half or nine tenths partial monolayers.  The homogeneously alloyed 

PdCu co-SEA nanoparticles as well as the 9/10ths monolayer Cu coated Pd nanoparticles 

showed enhanced resistance to sintering in the aqueous reaction environment, whereas the 

PdCo co-SEA catalyst dealloyed.  Pure Pd activity for the sequential conversion of furfural 

via FAL to either THFAL or COP was high and showed considerable amounts of FAL with 

mostly CPO as final product.  The activity of Cu was low and gave only the COP product, 
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suggesting that while furfural hydrogenation to the FAL intermediate is slow, activity for 

the ring arrangement step is higher.  Combining Cu with Pd yielded a synergistic catalyst 

in which the high FFA hydrogenation activity of Pd sites is combined with the high activity 

of Cu sites. 

The method of preparation was seen to be crucial to achieve this synergism; only 

the co-SEA preparation produced the necessary mixture of surface sites.  Cu deposited as 

partial shells imparted only the activity of Cu, meaning lower overall activity with complete 

selectivity to CPO.  The PdCo co-SEA catalyst was not nearly as active as PdCu co-SEA.  

In both cases the bimetallic DI catalysts had by far the lowest activity due to very large 

particle size.  The ½ monolayer PdCu SEA-ED catalyst did yield the unique result of being 

the only formulation to give high amounts of the secondary hydrogenation product, 

THFAL, instead of the ring-rearranged product CPO. 
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Appendix A 

Supporting information for furfural hydrogenation 

 

Figure A1:Product analysis of 0.7%Pd/SiO2 after 3 hours (150oC) in GC chart; t=2.301 

min,furan; t=5.621 min: standard, dioxane; t=9.273 min,cyclopentanone; t=16.187 min: 

cyclopentanol; t=20.794 min: furfural; t=29.559 min,furfuryl alcohol;scarce amount of 

furan and cyclopentanol only were observed in the final products. 

 

Table A1 pH measurement after 3 hours reaction. 

Catalyst Ph 

1.3%Pd% SEA 3.5 

1.2%Pd-0.5%Cu SEA 3.0 

0.4%Cu-1.3%Pd SEA-ED 3.2 

1.2%Pd-0.5%Cu DI 3.2 

2.3%Cu SEA 3.1 
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Figure A2 Product analysis of 1.3%Pd/SiO2; solide circles are by primary axis (left) and 

empty circles follow secondary axis (right). 

 

Figure A3 Product analysis of 2.3%Cu/SiO2; solide circles are by primary axis (left) and 

empty circles follow secondary axis (right). 
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Figure A4 Product analysis of 0.85%Co/SiO2; solide circles are by primary axis (left) and 

empty circles follow secondary axis (right). 

 

 

Figure A5 Product analysis of 1.2%Pd-0.5%Cu/SiO2 SEA; solide circles are by primary 

axis (left) and empty circles follow secondary axis (right). 
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Figure A6 Product analysis of 1.2%Pd-0.5%Cu/SiO2 DI; solide circles are by primary axis 

(left) and empty circles follow secondary axis (right). 

 

Figure A7 Product analysis of 0.2%Cu-1.3%Pd /SiO2 SEA-ED; solide circles are by 

primary axis (left) and empty circles follow secondary axis (right). 
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Figure A8 Product analysis of 0.4%Cu-1.3%Pd /SiO2 SEA-ED; solide circles are by 

primary axis (left) and empty circles follow secondary axis (right). 

 

Figure A9 Product analysis of 1.3%Pd-0.7%Co /SiO2 SEA; solide circles are by primary 

axis (left) and empty circles follow secondary axis (right). 
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Figure A10 Product analysis of 1.3%Pd-0.7%Co /SiO2 DI; solide circles are by primary 

axis (left) and empty circles follow secondary axis (right). 
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Appendix B 

Permission to re-use Chapter 4.2.1 
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Appendix C 

Permission to reproduce Chapter 4.2.2 
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